如圖,在平面直角坐標(biāo)系xOy中,以點A(3,0)為圓心的圓與x軸交于原點O和點B,直線l與x軸、y軸分別交于點C(-2,0)、D(0,3).
(1)求出直線l的解析式;
(2)若直線l繞點C順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)后的直線與y軸交于點E(0,b),且0<b<3,在旋轉(zhuǎn)的過程中,直線CE與⊙A有幾種位置關(guān)系?試求出每種位置關(guān)系時,b的取值范圍.

【答案】分析:(1)設(shè)直線l的解析式為:y=kx+b,將點C(-2,0)、D(0,3)的坐標(biāo)代入求出k,b的值即可;
(2)直線CE與⊙A有相交、相切和相離3種位置關(guān)系,然后分別求出對應(yīng)情況下的b的取值范圍即可.
解答:解:(1)設(shè)直線l的解析式為:y=kx+b,
將點C(-2,0)、D(0,3)的坐標(biāo)代入有:,
解得:k=,b=3.
∴直線l的解析式為:y=

(2)由題意得:旋轉(zhuǎn)得到的直線l的解析式為:y=
當(dāng)直線與圓相切時,有=3,
解得:b=,
∴當(dāng)0<b時,直線與圓相離;
當(dāng)b=時,直線與圓相切;
當(dāng)b<3時,直線與圓相交.
點評:本題考查了直線與圓的位置關(guān)系,難度適中,注意掌握直線與圓的三種位置關(guān)系:相交、相切和相離.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案