【題目】如圖,扇形ABC的圓心角為90°,半徑為6,將扇形ABCA點逆時針旋轉(zhuǎn)得到扇形ADE,點B、C的對應(yīng)點分別為點D、E,若點D剛好落在上,則陰影部分的面積為_____

【答案】3π+9

【解析】

直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合扇形面積求法以及等邊三角形的判定與性質(zhì)得出S陰影S扇形ADES弓形ADS扇形ABCS弓形AD,進而得出答案.

解:連接BD,過點BBNAD于點N,

∵將半徑為4,圓心角為90°的扇形BACA點逆時針旋轉(zhuǎn)60°,

∴∠BAD60°,ABAD,

∴△ABD是等邊三角形,

∴∠ABD60°,

則∠ABN30°,

AN3BN3,

S陰影S扇形ADES弓形ADS扇形ABCS弓形AD

﹣(×6×3

3π+9

故答案為3π+9

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線ly=kx+my軸于點C,與拋物線y=ax2+bx交于點A40)、B-,-).

1)直線l的表達式為:______,拋物線的表達式為:______;

2)若點P是二次函數(shù)y=ax2+bx在第四象限內(nèi)的圖象上的一點,且2SAPB=SAOB,求AOP的面積;

3)若點Q是二次函數(shù)圖象上一點,設(shè)點Q到直線l的距離為d,到拋物線的對稱軸的距離為d1,當(dāng)|d-d1|=2時,請直接寫出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌電腦銷售公司有營銷員14人,銷售部為制定營銷人員月銷售電腦定額,統(tǒng)計了這14人某月的銷售量如下(單位:臺):

銷售量

200

170

130

80

50

40

人數(shù)

1

1

2

5

3

2

1)該公司營銷員銷售該品牌電腦的月銷售平均數(shù)是 臺,中位數(shù)是 臺,眾數(shù)是 臺.

2)銷售部經(jīng)理把每位營銷員月銷售量定為90臺,你認(rèn)為是否合理?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角形的外接圓半徑為5,內(nèi)切圓半徑為2,則此三角形周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD為⊙O的直徑,點A是劣弧BC的中點,ADBC于點E,連結(jié)AB.

(1)求證:AB2=AE·AD;

(2)AE=2ED=4,求圖中陰影的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是直徑,C的中點,延長AD,BC交于點P,連結(jié)AC

1)求證:ABAP;

2)若AB10,DP2

①求線段CP的長;

②過點DDEAB于點E,交AC于點F,求ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知、兩點的坐標(biāo)分別為,,直線與反比例函數(shù)的圖象相交于點和點

1)求直線與反比例函數(shù)的解析式;

2)求的度數(shù);

3)將繞點順時針方向旋轉(zhuǎn)(為銳角),得到,當(dāng)為多少度時,并求此時線段的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)生騎電動車上學(xué)的現(xiàn)象越來越受到社會的關(guān)注.為此某媒體記者小李隨機調(diào)查了城區(qū)若干名中學(xué)生家長對這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無所謂;B:反對;C:贊成)并將調(diào)査結(jié)果繪制成圖和圖的統(tǒng)計圖(不完整)請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)査中.共調(diào)査了______名中學(xué)生家長;

2)將圖形①、②補充完整;

3)根據(jù)抽樣調(diào)查結(jié)果.請你估計我市城區(qū)80000名中學(xué)生家長中有多少名家長持反對態(tài)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑的于點,切線于點.

1)求證:;

2)若,求的長.

查看答案和解析>>

同步練習(xí)冊答案