【題目】如圖1,在四邊形ABCD中,∠DAB被對(duì)角線(xiàn)AC平分,且AC2ABAD,我們稱(chēng)該四邊形為可分四邊形,∠DAB稱(chēng)為可分角

1)如圖2,四邊形ABCD可分四邊形,∠DAB可分角,求證:DAC∽△CAB

2)如圖2,四邊形ABCD可分四邊形,∠DAB可分角,如果∠DCB=∠DAB,則∠DAB °

3)現(xiàn)有四邊形ABCD可分四邊形,∠DAB可分角,且AC4,BC2,∠D90°,求AD的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)120°;(3)

【解析】

1)先判斷出,即可得出結(jié)論;
2)由已知條件可證得△ADC∽△ACB,得出D=4,再由已知條件和三角形內(nèi)角和定理得出∠1+21=180°,求出∠1=60°,即可得出∠DAB的度數(shù);
3)由已知得出AC2=ABAD,∠DAC=CAB,證出△ADC∽△ACB,得出∠D=ACB=90°,由勾股定理求出AB,即可得出AD的長(zhǎng).

1)證明:∵四邊形ABCD可分四邊形,∠DAB可分角,

AC2ABAD,

∵∠DAB可分角,

∴∠CAD=∠BAC,

∴△DAC∽△CAB;

2)解:如圖所示:

AC平分∠DAB,

∴∠1=∠2

AC2ABAD

ADACACAB,

∴△ADC∽△ACB,

∴∠D=∠4,

∵∠DCB=∠DAB,

∴∠DCB=∠3+421

∵∠1+D+3=∠1+4+3180°

∴∠1+21180°,

解得:∠160°,

∴∠DAB120°;

故答案為:120;

3)解:∵四邊形ABCD可分四邊形,∠DAB可分角,

AC2ABAD,∠DAC=∠CAB,

ADACACAB,

∴△ADC∽△ACB,

∴∠D=∠ACB90°,

AB

AD .

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),已知

1)點(diǎn)A的坐標(biāo)為(____,______);

2)將繞點(diǎn)順時(shí)針旋轉(zhuǎn)

①當(dāng)時(shí),點(diǎn)恰好落在反比例函數(shù)的圖象上,求的值;

②在旋轉(zhuǎn)過(guò)程中,點(diǎn)能否同時(shí)落在上述反比例函數(shù)的圖象上,若能,求出的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中, , ,DAB邊的中點(diǎn),EAC邊上一點(diǎn),聯(lián)結(jié)DE,過(guò)點(diǎn)DBC邊于點(diǎn)F,聯(lián)結(jié)EF

(1)如圖1,當(dāng)時(shí),求EF的長(zhǎng);

(2)如圖2,當(dāng)點(diǎn)EAC邊上移動(dòng)時(shí), 的正切值是否會(huì)發(fā)生變化,如果變化請(qǐng)說(shuō)出變化情況;如果保持不變,請(qǐng)求出的正切值;

(3)如圖3,聯(lián)結(jié)CDEF于點(diǎn)Q,當(dāng)是等腰三角形時(shí),請(qǐng)直接寫(xiě)出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中考體育測(cè)試前,某區(qū)教育局為了了解選報(bào)引體向上的初三男生的成績(jī)情況,隨機(jī)抽測(cè)了本區(qū)部分選報(bào)引體向上項(xiàng)目的初三男生的成績(jī),并將測(cè)試得到的成績(jī)繪成了下面兩幅不完整的統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)圖中的信息,解答下列問(wèn)題:

(1)補(bǔ)全條形圖;

(2)直接寫(xiě)出在這次抽測(cè)中,測(cè)試成績(jī)的眾數(shù)和中位數(shù);

(3)該區(qū)體育中考選報(bào)引體向上的男生共有1800人,如果體育中考引體向上達(dá)6個(gè)以上(含6個(gè))得滿(mǎn)分,請(qǐng)你估計(jì)該區(qū)體育中考中選報(bào)引體向上的男生能獲得滿(mǎn)分的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)(﹣2,0),則下列結(jié)論:①bc>0b+2a=0;a+c>b;16a+4b+c=0;3a+c<0,其中正確的結(jié)論是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AB=BC=12cm,點(diǎn)D從點(diǎn)A開(kāi)始沿邊AB2cm/s的速度向點(diǎn)B移動(dòng),移動(dòng)過(guò)程中始終保持DEBC,DFAC,

求:出發(fā)幾秒時(shí),四邊形DFCE的面積為20cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,ACB=90°,ABC=60°,BC=2cm,DBC的中點(diǎn),若動(dòng)點(diǎn)E1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t6),連接DE,當(dāng)BDE是直角三角形時(shí),t的值為

A2 B、2.53.5 C3.54.5 D、23.54.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)與直線(xiàn)經(jīng)過(guò)點(diǎn),且相交于另一點(diǎn),拋物線(xiàn)與軸交于點(diǎn),與軸交于另一點(diǎn),過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于點(diǎn),且軸,連接,當(dāng)點(diǎn)在線(xiàn)段上移動(dòng)時(shí)(不與、重合),下列結(jié)論正確的是( )

A.B.

C.D.四邊形的最大面積為13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,B(5,2),點(diǎn)DOA的中點(diǎn),動(dòng)點(diǎn)P在線(xiàn)段BC上以每秒2個(gè)單位長(zhǎng)的速度由點(diǎn)CB 運(yùn)動(dòng).設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t

(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?

(2)在直線(xiàn)CB上是否存在一點(diǎn)Q,使得O、DQ、P四點(diǎn)為頂點(diǎn)的四邊形是菱形?若存在,求t的值,并求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)在線(xiàn)段PB上有一點(diǎn)M,且PM=2.5,當(dāng)P運(yùn)動(dòng)多少,四邊形OAMP的周長(zhǎng)最小值為多少,并畫(huà)圖標(biāo)出點(diǎn)M的位置.

查看答案和解析>>

同步練習(xí)冊(cè)答案