【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸相交于、兩點.若在拋物線上有且只有三個不同的點、,使得、的面積都等于,則的值是(

A. 6 B. 8 C. 12 D. 16

【答案】B

【解析】

由拋物線上有且只有三個不同的點、、,使得、的面積都等于可得在C1、C2、C3三個點中有一個為拋物線的頂點,根據(jù)配方法可求出拋物線的頂點的坐標(biāo),根據(jù)三角形面積公式即可求出m的值.

∵拋物線上有且只有三個不同的點、、,使得、、的面積都等于,

C1C2、C3三個點中有一個為拋物線的頂點,

y=(x+1)(x-3)=x2-2x-3=(x-1)2-4

∴拋物線的頂點坐標(biāo)為(1,-4),

∵拋物線軸相交于、兩點,

AB坐標(biāo)分別為(0,-1)和(0,3),

m= ×=×4×4=8.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線yABCD的頂點B,D.點D的坐標(biāo)為(2,1),點Ay軸上,且ADx軸,SABCD6

1)填空:點A的坐標(biāo)為   ;

2)求雙曲線和AB所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對角線,ADBC,AD=2BC,ABD=90°,EAD的中點,連接BE.

(1)求證:四邊形BCDE為菱形;

(2)連接AC,若AC平分∠BAD,BC=1,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義符號min{a,b}的含義:當(dāng)ab時,min{a,b}b;當(dāng)ab時,min{ab}a,如min{1,﹣4}=﹣4min{6,﹣2}=﹣6,則min{x2+2,﹣2x}的最大值為(  )

A. 22 B. +1 C. 1 D. 2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的快速發(fā)展,互聯(lián)網(wǎng)+滲透到我們?nèi)粘I畹母鱾領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢,現(xiàn)有某教學(xué)網(wǎng)站策劃了A,B兩種上網(wǎng)學(xué)習(xí)的月收費方式:

收費方式

月使用費/元

包時上網(wǎng)時間/h

超時費/(元/min)

A

7

25

0.01

B

m

n

0.01

設(shè)每月上網(wǎng)學(xué)習(xí)時間為x小時,方案A,B的收費金額分別為yA,yB

(1)如圖是yB與x之間函數(shù)關(guān)系的圖象,請根據(jù)圖象填空:m= ;n=

(2)寫出yA與x之間的函數(shù)關(guān)系式.

(3)選擇哪種方式上網(wǎng)學(xué)習(xí)合算,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上的一動點(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當(dāng)C在⊙O上運動時,點P的位置( 。

A. 隨點C的運動而變化

B. 不變

C. 在使PA=OA的劣弧上

D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點為正邊上一點(不與點重合),點分別在邊上,且.

(1)求證:;

(2)設(shè),的面積為的面積為,求(用含的式子表示);

(3)如圖2,若點邊的中點,求證: .

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】. 在一個不透明的布袋中裝有三個小球,小球上分別標(biāo)有數(shù)字﹣10、2,它們除了數(shù)字不同外,其他都完全相同.

1)隨機地從布袋中摸出一個小球,則摸出的球為標(biāo)有數(shù)字2的小球的概率為 ;

2)小麗先從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點M的縱坐標(biāo),請用樹狀圖或表格列出點M所有可能的坐標(biāo),并求出點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四個全等的直角三角形按圖示方式圍成正方形ABCD,過各較長直角邊的中點作垂線,圍成面積為S的小正方形EFGH.已知AMRtABM較長直角邊,AM2EF,則正方形ABCD的面積為(  )

A. 14SB. 13SC. 12SD. 11S

查看答案和解析>>

同步練習(xí)冊答案