如圖,圓周角∠BAC=55°,分別過B,C兩點作⊙O的切線,兩切線相交與點P,則∠BPC= ▲ °.
70。
切線的性質,圓周角定理。
連接OB,OC,

∵PB,PC是⊙O的切線,∴OB⊥PB,OC⊥PC。
∴∠PBO=∠PCO=90°,
∵∠BOC=2∠BAC=2×55°=110°,
∴∠BPC=360°-∠PBO-∠BOC-∠PCO=360°-90°-110°-90°=70°。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

推理證明(本小題滿分6分)
如圖,在△ABC中,DAB邊上一點,圓OD、B、C三點, ÐDOC=2ÐACD=90°.

(1)求證:直線AC是圓O的切線;
(2)如果ÐACB=75°,圓O的半徑為2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,過格點A,B,C作一圓弧,[
(1)在圖中作出該弧的圓心O,則點O的坐標是(   ,  );
(2)作出過點B且與該弧相切的直線;(原創(chuàng))

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙的半徑為5,⊙的半徑為3,兩圓的圓心距為7,則兩圓的位置關系是      
外離         外切      內切       相交

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

母線長為4,底面圓的半徑為1的圓錐的側面積為___________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙O1與⊙O2相切 (包括內切與外切 ) ,⊙O1的半徑為3 cm ,⊙O2的半徑為2 cm,則O1O2的長是(    )
A.1 cmB.5 cmC.1 cm或5 cmD.0.5cm或2.5cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC內接于⊙O,CA=CB,CD∥AB且與OA的延長線交于點D.

(1)判斷CD與⊙O的位置關系并說明理由;
(2)若∠ACB=120°,OA=2,求CD的長.
(3)在(2)條件下求圖中的陰影部分面積。(結果可含

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知⊙O的直徑AB為6cm,弦CD與AB相交,夾角為30°,交點M恰好為AB的一個
三等分點,則CD的長為  ▲  cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,有一個圓形花壇,要把它分成面積相等的四部分,以種植不同的花卉,請你提供設計方案.下列圖2—4是對圓進行四等分的三種作圖:

解決問題:
小題1:在圖1中,請你也設計一種方案,把⊙O的面積四等分,并要求整個圖案是中心對稱圖形;

小題2:在圖3中,求    ;
小題3:在圖4中,△ABC是正三角形,設⊙O的半徑為r , 求△ABC的內切圓的面積(用含r的式子表示).

查看答案和解析>>

同步練習冊答案