【題目】華聯(lián)超市用6000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)﹣進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 22 | 30 |
售價(jià)(元/件) | 29 | 40 |
(1)該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)該超市將購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?
【答案】(1) 該超市第一次購(gòu)進(jìn)甲種商品150件、乙種商品90件.(2) 1950元.
【解析】
(1)設(shè)第一次購(gòu)進(jìn)甲種商品x件,則乙種商品的件數(shù)是(x+15),根據(jù)題意列出方程求出其解就可以;
(2)由利潤(rùn)=售價(jià)-進(jìn)價(jià)作答即可.
解:(1)設(shè)第一次購(gòu)進(jìn)甲種商品x件,則購(gòu)進(jìn)乙種商品(x+15)件,
根據(jù)題意得:22x+30(x+15)=6000,
解得:x=150,
∴x+15=90.
答:該超市第一次購(gòu)進(jìn)甲種商品150件、乙種商品90件.
(2)(29﹣22)×150+(40﹣30)×90=1950(元).
答:該超市將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得利潤(rùn)1950元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在、……這個(gè)數(shù)中,不能表示成兩個(gè)平方數(shù)差的數(shù)有________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在5×5的方格紙中,每一個(gè)小正方形的邊長(zhǎng)都為1.
(1)∠BCD是不是直角?請(qǐng)說(shuō)明理由;
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解一元一次不等式或不等式組
(1)3(x+2)-8≥1-2(x-1)
(2)
(3)求不等式組的非負(fù)整數(shù)解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下材料:對(duì)于三個(gè)數(shù)a,b,c,用M{a,b,c}表示這三個(gè)數(shù)的平均數(shù),用min{a,b,c}表示這三個(gè)數(shù)中最小的數(shù).例如:M{﹣1,2,3}==;min{﹣1,2,3}=﹣1;min{﹣1,2,a}=
解決下列問題:
(1)若min{2,2x+2,4﹣2x}=2,則x的范圍__________;
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;
②根據(jù)①,你發(fā)現(xiàn)了結(jié)論“如果M{a,b,c}=min{a,b,c},那么__________(填a,b,c的大小關(guān)系)”.
③運(yùn)用②的結(jié)論,若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,2x﹣y},求x+y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),連結(jié)PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連結(jié)CQ.若PA∶PB∶PC=3∶4∶5,連結(jié)PQ,試判斷△PQC的形狀( )
A. 直角三角形 B. 等腰三角形 C. 銳角三角形 D. 鈍角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b和反比例函數(shù)y2= 的圖象交于A、B兩點(diǎn).
(1)求一次函數(shù)y1=kx+b和反比例函數(shù)y2= 的解析式;
(2)觀察圖象寫出y1<y2時(shí),x的取值范圍為;
(3)求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣4,2)、B(0,4)、C(0,2),
(1)畫出△ABC關(guān)于點(diǎn)C成中心對(duì)稱的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對(duì)應(yīng)的△A2B2C2;
(2)△A1B1C和△A2B2C2關(guān)于某一點(diǎn)成中心對(duì)稱,則對(duì)稱中心的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,點(diǎn)M為射線AE上任意一點(diǎn)(不與點(diǎn)A重合),連接CM,將線段CM繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°得到線段CN,直線NB分別交直線CM,射線AE于點(diǎn)F、D.
(1)問題發(fā)現(xiàn):直接寫出∠NDE=度;
(2)拓展探究:試判斷,如圖②當(dāng)∠EAC為鈍角時(shí),其他條件不變,∠NDE的大小有無(wú)變化?請(qǐng)給出證明.
(3)如圖③,若∠EAC=15°,BD= ,直線CM與AB交于點(diǎn)G,其他條件不變,請(qǐng)直接寫出AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com