【題目】已知是等腰直角三角形,,點(diǎn)的中點(diǎn),延長至點(diǎn),使,連接(如圖).

1)求證:;

2)已知點(diǎn)的中點(diǎn),連接(如圖).

①求證: ;

②如圖③,延長至點(diǎn),使,連接,求證:.

【答案】1)見解析;(2)①見解析;②見解析.

【解析】

(1)由點(diǎn)MAC中點(diǎn)知AMCM,結(jié)合∠AMD=∠CMBDMBM即可得證;

(2)①由點(diǎn)M,N分別是AC,BC的中點(diǎn)及ACBC可得CMCN,結(jié)合∠C=∠CBCAC即可得證;

②過點(diǎn)于點(diǎn),得∠NAC=∠AEF,由(1)可知,則可證,可證,據(jù)此知,再證,又,又因為,從而得,即可得證.

1)∵中點(diǎn)

又∵

∴在

()

2是等腰直角三角形

中點(diǎn),中點(diǎn)

,

又∵

∴在

()

過點(diǎn)于點(diǎn)

由(1)可知

()

,,

中點(diǎn)

中點(diǎn)

垂直平分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動點(diǎn)E、F分別從點(diǎn)B、D同時出發(fā),以1cm/s的速度向點(diǎn)A、C運(yùn)動,連接AF、CE,取AF、CE的中點(diǎn)G、H,連接GE、FH.設(shè)運(yùn)動的時間為ts(0<t<4).

(1)求證:AF∥CE;

(2)當(dāng)t為何值時,四邊形EHFG為菱形;

(3)試探究:是否存在某個時刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中, °,點(diǎn)D是線段BC上的動點(diǎn),將線段AD繞點(diǎn)A順時針旋轉(zhuǎn)50°,連接.已知AB2cm,設(shè)BDx cm,By cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是小明的探究過程,請補(bǔ)充完整.(說明:解答中所填數(shù)值均保留一位小數(shù))

1通過取點(diǎn)、畫圖、測量,得到了的幾組值,如下表:

0.5

0.7

1.0

1.5

2.0

2.3

1.7

1.3

1.1

0.7

0.9

1.1

2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.

3)結(jié)合畫出的函數(shù)圖象,解決問題:

線段的長度的最小值約為__________

,則的長度x的取值范圍是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古代阿拉伯?dāng)?shù)學(xué)家泰比特·伊本·奎拉對勾股定理進(jìn)行了推廣研究如圖(圖1為銳角2為直角,3為鈍角)

ABC的邊BC上取, 兩點(diǎn)使,, ,進(jìn)而可得 ;(用表示

AB=4,AC=3,BC=6,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,平分線,的垂直平分線分別交延長線于點(diǎn).求證:.

證明:∵平分

(角平分線的定義)

垂直平分

(線段垂直平分線上的點(diǎn)到線段兩個端點(diǎn)距離相等)

( )

(等量代換)

( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(t,0)x軸上的動點(diǎn),Q(0,2t)y軸上的動點(diǎn).若線段PQ與函數(shù)y=﹣|x|2+2|x|+3的圖象只有一個公共點(diǎn),則t的取值是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一自動噴灌設(shè)備的噴流情況如圖所示,設(shè)水管OA在高出地面1.5米的A處有一自動旋轉(zhuǎn)的噴水頭,一瞬間流出的水流是拋物線狀,噴頭A與水流最高點(diǎn)B連線與y軸成45°角,水流最高點(diǎn)B比噴頭A2米.

1)求水流落地點(diǎn)CO點(diǎn)的距離;

2)若水流的水平位移s(米)(拋物線上兩對稱點(diǎn)之間的距離)與水流的運(yùn)動時間(t秒)之間的函數(shù)關(guān)系為t= 0.8s,求共有幾秒鐘,水流高度不低于2米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD交于點(diǎn)E,BAC=90°,CED=45°,DCE=30°,DE=,BE=.求CD的長和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B在直線上運(yùn)動,當(dāng)線段AB最短時,點(diǎn)B的坐標(biāo)為( )

A. (0,0) B. , C. , D. ,

查看答案和解析>>

同步練習(xí)冊答案