【題目】如圖,直角梯形ABCD中,ADBCABBC, AD=3,將腰CDD為中心逆時針旋轉(zhuǎn)90°至DE,連接AECE,AED的面積為6,則BC的長為_____

【答案】7

【解析】

DDMBCM,過EENAD,交AD延長線于N,求出∠END=DMC,∠EDN=CDM,根據(jù)AASEDN≌△CDM,求出EN=CM=4,即可求出答案.

DDMBCM,過EENAD,交AD延長線于N,


AD=3,ADE的面積為6,
AD×EN=6
EN=4,
DMBC,ADBC,
∴∠NDM=BMD=90°,
∵∠EDC=90°
∴∠EDC-CDN=MDN-CDN,
∴∠EDN=CDM,
DMBC,ENAD,
∴∠END=DMC=90°,
ENDCMD

,

∴△END≌△CMDAAS),
EN=MC=4,
ABBC,DMBC,
DMAB,
ADBC
∴四邊形ABMD是平行四邊形,
AD=BM=3
BC=3+4=7,
故答案是:7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校體育課外活動興趣小組,開設(shè)了以下體育課外活動項目:A.足球 B.乒乓球C.羽毛球 D.籃球,為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

1)這次被調(diào)查的學(xué)生共有   人,在扇形統(tǒng)計圖中“D”對應(yīng)的圓心角的度數(shù)為   ;

2)請你將條形統(tǒng)計圖補充完整;

3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加市里組織的乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c(b,c都是常數(shù))的圖象經(jīng)過點(1,0)和(0,2).

(1)當(dāng)﹣2≤x≤2時,求y的取值范圍.

(2)已知點P(m,n)在該函數(shù)的圖象上,且m+n=1,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖線段為線段上一點,且

1)若中點,為線段上一點且,求線段的長.

2)若動點開始出發(fā),以1.5個單位長度每秒的速度向運動,到點結(jié)束;動點點出發(fā)以0.5個單位長度每秒的速度向運動,到點結(jié)束,運動時間為秒,當(dāng)時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=DOC=90°,OE平分∠AOD,反向延長射線OEF.

1)∠AOD和∠BOC是否互補?說明理由;

2)射線OF是∠BOC的平分線嗎?說明理由;

3)反向延長射線OA至點G,射線OG將∠COF分成了43的兩個角,求∠AOD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,ORtABC的外接圓,過點C作⊙O的切線交BA的延長線于點E,BDCE于點D,連接DOBC于點M.

(1)求證:BC平分∠DBA;

(2),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖RtABC中,∠C=90°,AC=6,BC=8,DAB的中點,P是直線BC上一點,把△BDP沿PD所在直線翻折后,點B落在點Q處,如果QDBC,那么點P和點B間的距離等于____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BCD=D=90°E是邊AB的中點.已知AD=1,AB=2.

1)設(shè)BC=x,CD=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;

2)當(dāng)∠B=70°時,求∠AEC的度數(shù);

3)當(dāng)△ACE為直角三角形時,求邊BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的運算程序中若開始輸入的x值為100,我們發(fā)現(xiàn)第1次輸出的結(jié)果為50,2次輸出的結(jié)果為25,,2018次輸出的結(jié)果為_________

查看答案和解析>>

同步練習(xí)冊答案