23、已知:如圖,在直角坐標(biāo)系中,⊙O1經(jīng)過坐標(biāo)原點(diǎn),分別與x軸正半軸、y軸正半軸交于點(diǎn)A(3,0)、B(0,4).設(shè)△BOA的內(nèi)切圓的直徑為d,則d+AB的值為
7
分析:根據(jù)勾股定理求得斜邊AB的長(zhǎng),再根據(jù)直角三角形的內(nèi)切圓的半徑等于兩條直角邊的和與斜邊的差的一半,進(jìn)一步計(jì)算其內(nèi)切圓的直徑,從而求得結(jié)果.
解答:解:設(shè)△BOA的內(nèi)切圓與OA、OB、AB分別切于點(diǎn)D、E、F,且半徑為x.
∵∠AOB=90°,OA=3,0B=4,
∴AB=5.
∴OD=OE=x,BE=BF=4-x,AD=AF=3-x.
∴(4-x)+(3-x)=5.
解得x=1.
∴d+AB=2+5=7.
點(diǎn)評(píng):此題要熟記直角三角形的內(nèi)切圓的半徑計(jì)算方法:
直角三角形的內(nèi)切圓的半徑等于兩條直角邊的和與斜邊的差的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1)已知,矩形ABDC的邊AC=3,對(duì)角線長(zhǎng)為5,將矩形ABDC置于直角坐系內(nèi),點(diǎn)D與原點(diǎn)O重合.且反比例函數(shù)y=
k
x
的圖象的一個(gè)分支位于第一象限.
(1)求點(diǎn)A的坐標(biāo);
(2)若矩形ABDC從圖(1)的位置開始沿x軸的正方向移動(dòng),每秒移動(dòng)1個(gè)單位,1秒后點(diǎn)A剛好落在反比例函數(shù)y=
k
x
的圖象的圖象上,求k的值;
(3)矩形ABCD繼續(xù)向x軸的正方向移動(dòng),AB、AC與反比例函數(shù)圖象分別交于P、Q如圖(2),設(shè)移動(dòng)的總時(shí)間為t(1<t<5),分別寫出△BPD的面積S1、△DCQ的面積S2與t的函數(shù)關(guān)系式;
(4)在(3)的情況下,當(dāng)t為何值時(shí),S2=
10
7
S1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省蘭州四中九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(1)已知,矩形ABDC的邊AC=3,對(duì)角線長(zhǎng)為5,將矩形ABDC置于直角坐系內(nèi),點(diǎn)D與原點(diǎn)O重合.且反比例函數(shù)y=的圖象的一個(gè)分支位于第一象限.
(1)求點(diǎn)A的坐標(biāo);
(2)若矩形ABDC從圖(1)的位置開始沿x軸的正方向移動(dòng),每秒移動(dòng)1個(gè)單位,1秒后點(diǎn)A剛好落在反比例函數(shù)y=的圖象的圖象上,求k的值;
(3)矩形ABCD繼續(xù)向x軸的正方向移動(dòng),AB、AC與反比例函數(shù)圖象分別交于P、Q如圖(2),設(shè)移動(dòng)的總時(shí)間為t(1<t<5),分別寫出△BPD的面積S1、△DCQ的面積S2與t的函數(shù)關(guān)系式;
(4)在(3)的情況下,當(dāng)t為何值時(shí),S2=S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點(diǎn)A,

與x軸交于點(diǎn)B,與反比例函數(shù)的圖象分別交于點(diǎn)M,N,已知△AOB的面積為1,點(diǎn)M的縱坐

標(biāo)為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時(shí)x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆安徽滁州八年級(jí)下期末模擬數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題

已知:如圖1,平面直角坐標(biāo)系中,四邊形OABC是矩形,點(diǎn)A,C的坐

標(biāo)分別為(6,0),(0,2).點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B,C不重合),過點(diǎn)D作直線=-交折線O-A-B于點(diǎn)E.

(1)在點(diǎn)D運(yùn)動(dòng)的過程中,若△ODE的面積為S,求S與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)如圖2,當(dāng)點(diǎn)E在線段OA上時(shí),矩形OABC關(guān)于直線DE對(duì)稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點(diǎn)D,M,O′A′分別交CB,OA于點(diǎn)N,E.求證:四邊形DMEN是菱形;

(3)問題(2)中的四邊形DMEN中,ME的長(zhǎng)為____________.

    

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣西欽州卷)數(shù)學(xué) 題型:解答題

(本題滿分8分)已知四邊形ABCD是邊長(zhǎng)為4的正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接PA、PB、PC、PD.

    (1)如圖①,當(dāng)PA的長(zhǎng)度等于 

時(shí),∠PAB=60°;

              當(dāng)PA的長(zhǎng)度等于    時(shí),△PAD是等腰三角形;

    (2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角

坐標(biāo)系(點(diǎn)A即為原點(diǎn)O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.坐

標(biāo)為(a,b),試求2 S1 S3-S22的最大值,并求出此時(shí)ab的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案