【題目】如圖,E、F為菱形ABCD對(duì)角線(xiàn)上的兩點(diǎn),∠ADE=∠CDF,要判定四邊形BFDE是正方形,需添加的條件是( )
A.AE=CFB.OE=OFC.∠EBD=45°D.∠DEF=∠BEF
【答案】C
【解析】
從對(duì)角線(xiàn)的角度看,一個(gè)四邊形需滿(mǎn)足其兩條對(duì)角線(xiàn)垂直、平分且相等才能判定是正方形,由于菱形的對(duì)角線(xiàn)已經(jīng)垂直,所以要判定四邊形BFDE是正方形,只需證明BD和EF相等且平分,據(jù)此逐項(xiàng)判斷即可.
解:∵四邊形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,
A、若AE=CF,則OE=OF,但EF與BD不一定相等,所以不能判定四邊形BFDE是正方形,本選項(xiàng)不符合題意;
B、若OE=OF,同樣EF與BD不一定相等,所以不能判定四邊形BFDE是正方形,本選項(xiàng)也不符合題意;
C、若∠EBD=45°,∵∠BOE=90°,∴∠BEO=45°,∴OE=OB,
∵AD=CD,∴∠DAE=∠DCF,又∵∠ADE=∠CDF,
∴△ADE≌△CDF(ASA),∴AE=CF,∴OE=OF,
∴EF=BD,∴四邊形BFDE是正方形,本選項(xiàng)符合題意;
D、若∠DEF=∠BEF,由C選項(xiàng)的證明知OE=OF,但不能證明EF與BD相等,所以不能判定四邊形BFDE是正方形,本選項(xiàng)不符合題意.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形ABCD中,∠A=60°,AB=2AD,BD的中垂線(xiàn)分別交AB,CD于點(diǎn)E,F(xiàn),垂足為O.
(1)求證:OE=OF;
(2)若AD=6,求tan∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水務(wù)部門(mén)為加強(qiáng)防汛工作,決定對(duì)某水庫(kù)大壩進(jìn)行加固.原大壩的橫截面是梯形ABCD,如圖所示,已知迎水面AB的長(zhǎng)為10米,∠B=60°,背水面DC的長(zhǎng)度為米,加固后大壩的橫截面是梯形ABED,CE的長(zhǎng)為5米.
(1)已知需加固的大壩長(zhǎng)為100米,求需要填方多少立方米;
(2)求新大壩背水面的坡度.(計(jì)算結(jié)果保留根號(hào))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC 中,∠C=90°,∠B=30°,以點(diǎn) A 為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交 AB,AC 于點(diǎn)M 和 N,再分別以 M,N 為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn) P,連接 AP 并延長(zhǎng)交 BC 于點(diǎn)D,則下列說(shuō)法中:①AD 是∠BAC 的平分線(xiàn);②點(diǎn) D 在線(xiàn)段 AB 的垂直平分線(xiàn)上;③S△DAC:S△ABC=1:2,正確的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD中,E是AD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)F,G,H分別是BC,BE,CE的中點(diǎn).
(1)求證:△BGF≌△FHC;
(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時(shí),求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O為圓心,以OA為半徑的圓分別交AB、AC于點(diǎn)E、D,在BC的延長(zhǎng)線(xiàn)上取點(diǎn)F,使得BF=EF.
(1)判斷直線(xiàn)EF與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠A=30°,求證:DG=DA;
(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要在木里縣某林場(chǎng)東西方向的兩地之間修一條公路MN,已知點(diǎn)C周?chē)?/span>200 m范圍內(nèi)為原始森林保護(hù)區(qū),在MN上的點(diǎn)A處測(cè)得C在A的北偏東45°方向上,從A向東走600 m到達(dá)B處,測(cè)得C在點(diǎn)B的北偏西60°方向上.
(1)MN是否穿過(guò)原始森林保護(hù)區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)
(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,O為菱形ABCD的對(duì)稱(chēng)中心,已知C(2,0),D(0,﹣1),N為線(xiàn)段CD上一點(diǎn)(不與C、D重合).
(1)求以C為頂點(diǎn),且經(jīng)過(guò)點(diǎn)D的拋物線(xiàn)解析式;
(2)設(shè)N關(guān)于BD的對(duì)稱(chēng)點(diǎn)為N1,N關(guān)于BC的對(duì)稱(chēng)點(diǎn)為N2,求證:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)過(guò)點(diǎn)N作y軸的平行線(xiàn)交(1)中的拋物線(xiàn)于點(diǎn)P,點(diǎn)Q為直線(xiàn)AB上的一個(gè)動(dòng)點(diǎn),且∠PQA=∠BAC,求當(dāng)PQ最小時(shí)點(diǎn)Q坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016甘肅省白銀市)如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點(diǎn)上.
(1)畫(huà)出△ABC關(guān)于x軸的對(duì)稱(chēng)圖形△A1B1C1;
(2)將△A1B1C1沿x軸方向向左平移3個(gè)單位后得到△A2B2C2,寫(xiě)出頂點(diǎn)A2,B2,C2的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com