【題目】在平面直角坐標(biāo)系中,三角形ABC的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn)A'的坐標(biāo)是(-2,2),現(xiàn)將三角形ABC平移,使點(diǎn)A變換為點(diǎn)A',點(diǎn)B',C'分別是B,C的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)畫出平移后的三角形A'B'C'(不寫畫法),并直接寫出B',C'的坐標(biāo);
(2)若三角形ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P'的坐標(biāo)是_______.
【答案】(1)圖形見解析,B'(-4,1), C'(-1,-1);(2)(a-5,b-2).
【解析】
(1)作圖見詳解,(2)根據(jù)A點(diǎn)和A'的對(duì)應(yīng)關(guān)系找到平移規(guī)律即可解題.
(1) 如圖, 由點(diǎn)A'和點(diǎn)A的坐標(biāo)可知是將三角形ABC向左平移5個(gè)單位,向下平移2個(gè)單位,所以點(diǎn)B (1,3)平移后坐標(biāo)為B'(-4,1), 點(diǎn)C (4, 1)平移后坐標(biāo)為C'(-1,-1).
(2) 點(diǎn)P(a,b)向左平移5個(gè)單位,向下平移2個(gè)單位后得到對(duì)應(yīng)點(diǎn)P'的坐標(biāo)為(a-5,b-2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用等式的性質(zhì)解下列方程:
(1)x-1=3;
(2)-5x=15;
(3)5x+4=-24;
(4)0.2x-0.5=0.7;
(5)2x-1=4x+3;
(6)4-3x=2x-1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E、F、G、H分別是任意四邊形ABCD中AD、BD、BC、CA的中點(diǎn),
(1)求證:四邊形EFGH是平行四邊形;
(2)四邊形ABCD的邊至少滿足什么條件時(shí),四邊形EFGH是菱形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動(dòng)點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】CD經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖1,若∠BCA=90°,∠α=90°,則BE_____CF;EF_____|BE﹣AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件_____,使①中的兩個(gè)結(jié)論仍然成立。
(2)如圖3,若直線CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想并給出理由。.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜坡AB的坡度是i=1:2,坡角B處有一棵樹BC,某一時(shí)刻測(cè)得樹BC在斜坡AB上的影子BD的長(zhǎng)度是10米,這時(shí)測(cè)得太陽(yáng)光線與水平線的夾角為60°,則樹BC的高度為多少米?(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD中,∠BAD的角平分線與邊BC交于點(diǎn)E,∠ADC的角平分線交直線AE于點(diǎn)O.
(1)若點(diǎn)O在四邊形ABCD的內(nèi)部,
①如圖1,若AD∥BC,∠B=40°,∠C=70°,則∠DOE= °;
②如圖2,試探索∠B、∠C、∠DOE之間的數(shù)量關(guān)系,并將你的探索過(guò)程寫下來(lái).
(2)如圖3,若點(diǎn)O在四邊形ABCD的外部,請(qǐng)你直接寫出∠B、∠C、∠DOE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料.
點(diǎn)M,N在數(shù)軸上分別表示數(shù)m和n,我們把m,n之差的絕對(duì)值叫做點(diǎn)M,N之間的距離,即MN=|m﹣n|.如圖,在數(shù)軸上,點(diǎn)A,B,O,C,D的位置如圖所示,則DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.
(1)OA= ,BD= ;
(2)|1﹣(﹣4)|表示哪兩點(diǎn)的距離?
(3)點(diǎn)P為數(shù)軸上一點(diǎn),其表示的數(shù)為x,用含有x的式子表示BP= ,當(dāng)BP=4時(shí),x= ;當(dāng)|x﹣3|+|x+2|的值最小時(shí),x的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com