【題目】(問題情境)(1)如圖1,四邊形ABCD是正方形,點E是AD邊上的一個動點,以CE為邊在CE的右側(cè)作正方形CEFG,連接DG、BE,則DG與BE的數(shù)量關(guān)系是 ;
(類比探究)
(2)如圖2,四邊形ABCD是矩形,AB=2,BC=4,點E是AD邊上的一個動點,以CE為邊在CE的右側(cè)作矩形CEFG,且CG:CE=1:2,連接DG、BE.判斷線段DG與BE有怎樣的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(拓展提升)
(3)如圖3,在(2)的條件下,連接BG,則2BG+BE的最小值為 .
【答案】(1)DG=BE;(2),DG⊥BE;(3)4.
【解析】
(1)通過證明△DCG和△BCE(SAS)全等,得到DG=BE.
(2)通過證明△DCG∽△BCE得到,所以.∠BEC=∠DGC.延長BE、GD相交于點H.因為矩形ECGF,所以∠FEC=∠FGC=90°,所以∠HEF
+∠BEC=180°-∠FEC=90°,∠FGH+∠DGC=90°,所以∠H=∠F=90°,所以DG⊥BE.
(3)作EN⊥BC于N,GM⊥BC交BC的延長線于M.首先證明點G的運動軌跡是線段GM,將2BG+BE的最小值轉(zhuǎn)化為求2(BG+DG)的最小值.
(1)DG=BE
理由:
∵正方形ABCD,
∴CD=CB,∠BCD=90°
∵正方形ECGF,
∴CG=CE,∠ECG=90°
∴∠ECG=∠BCD=90°
∴∠DCG=∠BCE
在△DCG和△BCE中
∴△DCG≌△BCE(SAS)
∴DG=BE
(2),DG⊥BE.
理由如下:延長BE、GD相交于點H.
∵矩形ECGF、矩形ABCD,
∴∠ECG=∠BCD=90°,
∴∠DCG=∠BCE,
∵CD:CB=2:4=1:2,CG:CE=1:2,
∴CD:CB=CG:CE,
∵∠DCG=∠BCE,
∴△DCG∽△BCE,
∴,∠BEC=∠DGC,
∴
∵矩形ECGF
∴∠FEC=∠FGC=∠F=90°
∴∠HEF+∠BEC=180°-∠FEC=90°,∠FGH+∠DGC=90°,
∴∠H=∠F=90°
∴DG⊥BE
(3)作EN⊥BC于N,GM⊥BC交BC的延長線于M.
易證△ECN∽△CGM,
∴,
∵EN=AB=2,
∴CM=1,
∴點G的運動軌跡是直線MG,
作點D關(guān)于直線GM的對稱點G′,連接BG′交GM于G,此時BG+GD的值最小,最小值=BG′
由(2)知,
∴BE=2DG
∴2BG+BE=2BG+2DG=2(BG+DG)
∴2BG+BE的最小值就是2(BG+DG)的最小值.
∵BG′=,
∴2BG+BE的最小值為4
故答案為4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是直線AB上一點,OC⊥OD,OM是∠BOD的角平分線,ON是∠AOC的角平分線,則∠MON的度數(shù)是_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,BC=AC=3,點D是BC邊上一點,∠DAC=30°,點E是AD邊上一點,CE繞點C逆時針旋轉(zhuǎn)90°得到CF,連接DF,DF的最小值是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.
①b2>4ac; ②4a-2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(-2,y1),(5,y2)是拋物線上的兩點,則y1<y2.
上述4個判斷中,正確的是( 。
A. ①② B. ①④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O的半徑為r(r>0),若點P′在射線OP上,滿足OP′OP=r2,則稱點P′是點P關(guān)于⊙O的“反演點”.
如圖2,⊙O的半徑為4,點B在⊙O上,∠BOA=60°,OA=8,若點A′,B′分別是點A,B關(guān)于⊙O的反演點,求A′B′的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市公交公司為應(yīng)對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,
(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?
(2)若該公司預(yù)計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com