【題目】小明和小亮相約晨練跑步,小明比小亮早1分鐘離開家門,3分鐘后迎面遇到從家跑來的小亮,兩人沿濱江路跑了2分鐘后,決定進行長跑比賽,比賽時小明的速度始終是180米/分,小亮的速度始終是220米/分.如圖是兩人之間的距離y(米)與小明離開家的時間x(分)之間的函數(shù)圖象,則下列結(jié)論中正確的是____________________.(寫序號即可)
①小明家與小亮家距離為540米;
②小亮比賽前的速度為120米/分;
③小明出發(fā)7分鐘時,兩人距離為80米;
④若小亮從家出門跑了14分鐘后,按原路以比賽時的速度返回,則再經(jīng)過1分鐘兩人相遇.
【答案】①②③④
【解析】
根據(jù)函數(shù)圖象可以求出小明比賽前的速度為(540-440)÷1=100米/分,甲乙兩家的距離為540米,根據(jù)速度×時間=路程就可以求出小亮在比賽前的速度與220比較久可以確定是否發(fā)生變化,根據(jù)比賽時甲乙的速度關(guān)系就可以求出比賽2分鐘時甲乙的距離,先求出14分鐘時小亮在小明前面的距離,再由相遇問題就可以求出結(jié)論.
由函數(shù)圖象及題意,得
①小明與小亮家相距:540米;故①正確;
②小亮比賽前的速度,由2×(v1+v2)=440,得v2=120m/min;故②正確;
③小明離家7分鐘時兩人之間的距離為:(7-5)(220-180)=80米;故③正確;
④小亮從家出門跑了14分鐘后兩人之間的距離為:(15-5)(220-180)=400米,
小亮返回時與小明相遇的時間為:400÷(180+220)=1分鐘,故④正確;
∴正確的有①②③④.
故答案為:①②③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個二次函數(shù)圖象上部分點的橫坐標x,縱坐標y的對應(yīng)值如下表:
(1)求這個二次函數(shù)的表達式;
(2)求m的值;
(3)在給定的直角坐標系中,畫出這個函數(shù)的圖象;
(4)根據(jù)圖象,寫出當(dāng)y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美化城市,改善人們的居住環(huán)境已成為城市建設(shè)的一項重要內(nèi)容。某市城區(qū)近幾年來,通過拆遷舊房、植草、栽樹、修建公園等措施,使城區(qū)綠地面積不斷增加(如圖所示).
(1)根據(jù)圖中所提供的信息,回答下列問題:2003年底綠地面積為____公頃,比2002年底增加了_____公頃;在2000年、2001年、2002年這三年中,綠地面積增加最多是_______年.
(2)為滿足城市發(fā)展的需要,計劃到2005年底使城區(qū)綠地總面積達到72.6公頃,試求2003年到2005年綠地面積的年平均增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D、E分別在△ABC的邊AC、BC上,線段BD與AE交于點F,且CDCA=CECB.
(1)求證:∠CAE=∠CBD;
(2)若,求證:ABAD=AFAE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】8年級某老師對一、二班學(xué)生閱讀水平進行測試,并將成績進行了統(tǒng)計,繪制了如下圖表(得分為整數(shù),滿分為10分,成績大于或等于6分為合格,成績大于或等于9分為優(yōu)秀).
平均分 | 方差 | 中位數(shù) | 眾數(shù) | 合格率 | 優(yōu)秀率 | |
一班 | 7.2 | 2.11 | 7 | 6 | 92.5% | 20% |
二班 | 6.85 | 4.28 | 8 | 8 | 85% | 10% |
根據(jù)圖表信息,回答問題:
(1)用方差推斷, 班的成績波動較大;用優(yōu)秀率和合格率推斷, 班的閱讀水平更好些;
(2)甲同學(xué)用平均分推斷,一班閱讀水平更好些;乙同學(xué)用中位數(shù)或眾數(shù)推斷,二班閱讀水平更好些.你認為誰的推斷比較科學(xué)合理,更客觀些.為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標系中,對于任意兩點,,若點滿足,,那么稱點是點,的融合點.
例如:,,當(dāng)點滿是,時,則點是點,的融合點,
(1)已知點,,,請說明其中一個點是另外兩個點的融合點.
(2)如圖,點,點是直線上任意一點,點是點,的融合點.
①試確定與的關(guān)系式.
②若直線交軸于點,當(dāng)為直角三角形時,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.
(1)AD與BC平行嗎?試寫出推理過程;
(2)求∠DAC和∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:(1)∠DCF=∠BCD;(2)EF=CF;(3)S△BEC= 2S△CEF;(4)∠DFE=3∠AEF;其中正確的結(jié)論是( )
A.(1)(2)B.(1)(2)(4)C.(2)(3)(4)D.(1)(3)(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+)2,善于思考的小明進行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時,若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a= ,b= ;
(2)試著把7+4化成一個完全平方式.
(3)若a是216的立方根,b是16的平方根,試計算:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com