【題目】如圖,Rt△ABC中,,,,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿AB向B點(diǎn)運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,連接DE,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為( 。
A.2或3.5B.2或3.2C.2或3.4D.3.2或3.4
【答案】A
【解析】
求出AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時(shí),DE∥AC,△EBD∽△ABC,得出AE=BE= AB=2cm,即可得出t=2s;②當(dāng)∠DEB=∠ACB=90°時(shí),證出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出結(jié)果.
解:∵∠ACB=90°,∠ABC=60°,
∴∠A=30°,
∴AB=2BC=4cm,
分兩種情況:
①當(dāng)∠EDB=∠ACB=90°時(shí),
DE∥AC,所以△EBD∽△ABC,
E為AB的中點(diǎn),AE=BE=AB=2cm,
∴t=2s;
②當(dāng)∠DEB=∠ACB=90°時(shí),
∵∠B=∠B,
∴△DBE∽△ABC,
∴∠BDE=∠A=30°,
∵D為BC的中點(diǎn),
∴BD=BC=1cm,
∴BE=BD=0.5cm,
∴AE=3.5cm,
∴t=3.5s;
綜上所述,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為2或3.5,
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是
A.a(chǎn)>0
B.當(dāng)-1<x<3時(shí),y>0
C.c<0
D.當(dāng)x≥1時(shí),y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分為三個(gè)三角形,則S△ABO︰S△BCO︰S△CAO等于( )
A. 1︰1︰1
B. 1︰2︰3
C. 2︰3︰4
D. 3︰4︰5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在解決問題:已知a=,求2a2﹣8a+1的值,他是這樣分析與解的:
∵a===2﹣
∴a﹣2=﹣
∴(a﹣2)2=3,a2﹣4a+4=3
∴a2﹣4a=﹣1
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1
請你根據(jù)小明的分析過程,解決如下問題:
(1)化簡+++…+
(2)若a=,求4a2﹣8a+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計(jì)劃一次購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大?
(3)實(shí)際進(jìn)貨時(shí),廠家對A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購進(jìn)A型電腦70臺.若商店保持兩種電腦的售價(jià)不變,請你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺電腦銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分線EF交AC于點(diǎn)E,交BC于點(diǎn)F.試探索BF與CF的數(shù)量關(guān)系,寫出你的結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與直線垂直相交于點(diǎn),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合).
(1)如圖1,已知、分別是和的角平分線,
①當(dāng)時(shí),求的度數(shù);
②點(diǎn)在運(yùn)動(dòng)的過程中,的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出的大小;
(2)如圖2,延長至,已知、的角平分線與的角平分線所在的直線分別相交于、,在中,如果有一個(gè)角是另一個(gè)角的3倍,請直接寫出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:若a,b都是非負(fù)實(shí)數(shù),則a+b≥2.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
證明:∵()2≥0,∴a-2+b≥0.
∴a+b≥2.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
舉例應(yīng)用:已知x>0,求函數(shù)y=x的最小值.
解:y=x=2.當(dāng)且僅當(dāng)x=,即x=時(shí),“=”成立.
∴當(dāng)x=時(shí),函數(shù)取得最小值,y最小=2.
問題解決:
(1)已知x>0,求函數(shù)y=的最小值;
(2)求代數(shù)式(m>-1)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AC經(jīng)過點(diǎn)(1,5)和(-1,1)與直線BC :y = -2x -1相交于點(diǎn)C 。
(1)求直線AC的解析式.
(2)求直AC與y軸交點(diǎn)A的坐標(biāo)及直線BC與y軸交點(diǎn)B的坐標(biāo).
(3)求兩直線交點(diǎn)C的坐標(biāo).
(4)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com