如圖,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿BC向點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)以相同速度從點(diǎn)C出發(fā)沿CD向點(diǎn)D運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求AB的長(zhǎng);
(2)設(shè)BP=x,問(wèn)當(dāng)x為何值時(shí)△PCQ的面積最大,并求出最大值;
(3)探究:在AB邊上是否存在點(diǎn)M,使得四邊形PCQM為菱形?請(qǐng)說(shuō)明理由.

【答案】分析:(1)作AE⊥BC,根據(jù)題意可知BE的長(zhǎng)度,再根據(jù)∠B的正弦值,即可推出AB的長(zhǎng)度;
(2)作QF⊥BC,根據(jù)題意推出BP=CQ,推出CP關(guān)于x的表達(dá)式,然后根據(jù)∠C的正弦值推出高QF關(guān)于x的表達(dá)式,即可推出面積關(guān)于x的二次函數(shù)式,最后根據(jù)二次函數(shù)的最值即可推出x的值;
(3)首先假設(shè)存在M點(diǎn),然后根據(jù)菱形的性質(zhì)推出,若存在,則PC=QC,9-x=x,x=,得出矛盾,所以假設(shè)是錯(cuò)誤的,故AB上不存在M點(diǎn).
解答:解:(1)作AE⊥BC,
∵等腰梯形ABCD中,AD=4,BC=9,
∴BE=(BC-AD)÷2=2.5,
∵∠B=45°,
∴AB=;

(2)作QF⊥BC,
∵等腰梯形ABCD,
∴∠B=∠C=45°,則△CQF是等腰直角三角形.
∵點(diǎn)P和點(diǎn)Q的運(yùn)動(dòng)速度、運(yùn)動(dòng)時(shí)間相同,BP=x,
∴BP=CQ=x,
∵BC=9,
∴CP=9-x,QF=
設(shè)△PQC的面積為y,
∴y=(9-x)•,
即y==-+,
∵AB=,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿BC向點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)以相同速度從點(diǎn)C出發(fā)沿CD向點(diǎn)D運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).BP=x,
∴0<x≤,
∴當(dāng)x=時(shí),△PQC的面積最大,最大值為:
S=PC•QF=(9-)×
=-

(3)不存在,
若存在,則PC=QC,
∴9-x=x,
∴x=,
,
∴邊AB上不存在點(diǎn)M,使得四邊形PCQM為菱形.
點(diǎn)評(píng):本題主要考查等腰梯形的性質(zhì)、解直角三角形、二次函數(shù)的最值、內(nèi)角和定理、菱形的性質(zhì),關(guān)鍵在于根據(jù)圖形畫出相應(yīng)的輔助線,熟練掌握相關(guān)的性質(zhì)定理即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿CD、DA向終點(diǎn)A運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止).設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個(gè)直角梯形時(shí),求t的值;
(2)試問(wèn)是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點(diǎn),求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中考必備’04全國(guó)中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動(dòng),且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時(shí),S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時(shí),x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長(zhǎng)度有什么關(guān)系?借助備用圖說(shuō)明理由;并進(jìn)一步探究:對(duì)任何一個(gè)梯形,當(dāng)一直線l經(jīng)過(guò)梯形中位線的中點(diǎn)并滿足什么條件時(shí),一定能平分梯形的面積?(只要求說(shuō)出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案