【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:

分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;

連接MN,分別交AB、AC于點D、O;

CCE∥ABMN于點E,連接AE、CD.

則四邊形ADCE的周長為(  )

A. 10 B. 20 C. 12 D. 24

【答案】A

【解析】

根據(jù)題意得:MN是AC的垂直平分線,即可得AD=CD,AE=CE,然后由CE∥AB,可證得CD∥AE,繼而證得四邊形ADCE是菱形,再根據(jù)勾股定理求出AD,進而求出菱形ADCE的周長.

:∵分別以A、C為圓心,以大于 AC的長為半徑在AC兩邊作弧,交于兩點M、N,
∴MN是AC的垂直平分線,
∴AD=CD,AE=CE,
∴∠CAD=∠ACD,∠CAE=∠ACE,
∵CE∥AB,
∴∠CAD=∠ACE,
∴∠ACD=∠CAE,
∴CD∥AE,
∴四邊形ADCE是平行四邊形,
∴四邊形ADCE是菱形;
∴OA=OC=AC=2,OD=OE,AC⊥DE,
∵∠ACB=90°,
∴DE∥BC,
∴OD是△ABC的中位線,
∴OD=BC=×3=1.5,
∴AD==2.5,
∴菱形ADCE的周長=4AD=10.
故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AB上一點,點DBC的中點,且AB18cm,AC4CD

1)圖中共有   條線段;

2)求AC的長;

3)若點E在直線AB上,且EA2cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,BD是對角線,且DB⊥BC,E、F分別為邊AB、CD的中點.求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點C的左側留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:(1)(2)的計算結果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.24, ≈2.45)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:線段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙兩同學的作業(yè):

甲:(1)以點C為圓心,AB長為半徑畫弧;

(2)以點A為圓心,BC長為半徑畫;

(3)兩弧在BC上方交于點D,連接AD,CD,四邊形ABCD即為所求(如圖1)

乙:(1)連接AC,作線段AC的垂直平分線,交AC于點M;

(2)連接BM并延長,在延長線上取一點D,使MD=MB,連接AD,CD,四邊形ABCD即為所求(如圖2).

對于兩人的作業(yè),下列說法正確的是( 。

A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=(m+1)x+2m-6.

(1)若函數(shù)圖象過(-1,2),求此函數(shù)的解析式;

(2)若函數(shù)圖象與直線y=2x+5平行,求其函數(shù)的解析式;

(3)求滿足(2)條件的直線與直線y=-3x+1的交點,并求這兩條直線與y軸所圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個側面; B方法:剪4個側面和5個底面。

現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側面和底面的個數(shù);

2)若裁剪出的側面和底面恰好全部用完,問能做多少個盒子?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橫、縱坐標都為整數(shù)的點稱為整點.如圖,從內向外依次為第,,個正方形(實線),若整點在第個正方形的邊上,則,,之間滿足的數(shù)量關系為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OAOCOBOD,四位同學分別說了自己的觀點.

甲:∠AOB∠COD.

乙:∠BOC∠AOD180°.

丙:∠AOB∠COD都是∠BOC的余角.

。簣D中小于平角的角有4個.

其中正確的結論有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案