【題目】如圖,AFCD,CB平分∠ACDBD平分∠EBF,且BCBD,下列結(jié)論:① BC平分∠ABE;② ACBE;③ CBE+D90°;④ DEB2ABC.其中正確結(jié)論的個數(shù)有( 。

A.1B.2C.3D.4

【答案】D

【解析】

根據(jù)平行線的性質(zhì)和判定,垂直定義,角平分線定義,三角形的內(nèi)角和定理進(jìn)行判斷即可.

AFCD,

∴∠ABC=ECB,∠EDB=DBF,∠DEB=EBA,

CB平分∠ACDBD平分∠EBF,

∴∠ECB=BCA,∠EBD=DBF,

BCBD,

∴∠EDB+ECB=90°,∠DBE+EBC=90°,

∴∠EDB=DBE,

∴∠ECB=EBC=ABC=BCA,

∴①BC平分∠ABE,正確;

∴∠EBC=BCA

∴②ACBE,正確;

∴③∠CBE+D=90°,正確;

∵∠DEB=EBA=2ABC,故④正確;

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解七年級800名學(xué)生期中數(shù)學(xué)考試情況,從中抽取了100名學(xué)生的數(shù)學(xué)成績進(jìn)行了統(tǒng)計.下面5個判斷中正確的有(  )

①這種調(diào)查方式是抽樣調(diào)查;②800名學(xué)生是總體:③每名學(xué)生的數(shù)學(xué)成績是個體④100名學(xué)生是總體的一個樣本;⑤樣本容量是100

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABE中,∠AEB=90°,點(diǎn)F是邊AE上的一點(diǎn),DEF的中點(diǎn),過點(diǎn)FBE的平行線交BD的延長線于點(diǎn)C.若CF=AF,BE=6cmDE=3cm,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明解不等式的過程如圖,請指出他解答過程中錯誤步驟的序號并寫出正確的解答過程.

解:去分母,3(1x)2(2x1)≤1.

去括號,33x4x1≤1.

移項,3x4x≤131.

合并同類項,得-x≤3.

兩邊都除以-1,x≤3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°AC=BC,AD平分∠CABBC于點(diǎn)DDE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )

A. 4cm B. 6cm C. 8cm D. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩地相距240km,甲騎摩托車由A地駛往B地,乙駕駛汽車由B地駛往A地,甲乙兩人同時出發(fā),乙達(dá)到A地停留1小時后,按原路原速返回B地,甲比乙晚1小時到達(dá)B地,甲、乙兩人行駛過程中均勻速行駛,甲乙兩人離各自出發(fā)點(diǎn)的路程ykm)與乙所用時間xh)的關(guān)系如圖,結(jié)合圖象回答下列問題.

1)在上述變化過程中,自變量是______,因變量是______;

2a的值為______

3)甲到達(dá)B地共需______小時;甲騎摩托車的速度是______km/h;

4)乙駕駛汽車的速度是多少km/h?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圖中的正方形中剪去一個邊長為2ab的正方形,將剩余的部分按圖的方式拼成一個長方形.

(1)求剪去正方形的面積;

(2)求拼成的長方形的長、寬以及它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)在一次實(shí)驗(yàn)中統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,給出的統(tǒng)計圖如圖所示,則 符合這一結(jié)果的實(shí)驗(yàn)可能是( )

A. 擲一枚正六面體的骰子,出現(xiàn)6點(diǎn)的概率

B. 擲一枚硬幣,出現(xiàn)正面朝上的概率

C. 任意寫出一個整數(shù),能被2整除的概率

D. 一個袋子中裝著只有顏色不同,其他都相同的兩個紅球和一個黃球,從中任意取出一個是黃球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,BC是O的弦,半徑ODBC,垂足為E,若BC=,DE=3.

求:

1O的半徑;

2弦AC的長;

3陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案