1.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)交x軸于A(-1,0)、B(5,0)兩點(diǎn),交y軸負(fù)半軸于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)如圖1,若點(diǎn)C的坐標(biāo)為(0,-$\frac{20}{9}$),求此拋物線的解析式;
(2)如圖2,在(1)的條件下,點(diǎn)P在拋物線的對(duì)稱軸上,設(shè)⊙P的半徑為r,當(dāng)⊙P與x軸和直線BD都相切時(shí),求圓心P的坐標(biāo);
(3)如圖3,若△ABC是等腰三角形,求點(diǎn)C的坐標(biāo);
(4)如圖4,若點(diǎn)C在y軸的負(fù)半軸上移動(dòng),則△ACD與△ABC的面積之比是否為定值?若是定值,請(qǐng)求出其值;若不是定值,請(qǐng)說(shuō)明理由.

分析 (1)根據(jù)拋物線與x軸的交點(diǎn)可設(shè)拋物線的交點(diǎn)式,將點(diǎn)C坐標(biāo)代入可得;
(2)先求出直線BD的解析式,由⊙P與x軸和直線BD都相切知點(diǎn)P到兩直線距離相等,列出方程可求得;
(3)若△ABC是等腰三角形時(shí)有AB=AC、BA=BC兩種情況,根據(jù)勾股定理可分別求出OC的長(zhǎng)度即可;
(4)可將A、B坐標(biāo)代入拋物線的解析式中,求出a、b,a、c的關(guān)系,然后將拋物線解析式中的b、c用a替換掉,進(jìn)而可用a表示出C、D的坐標(biāo),然后分別求出三角形ACB和三角形ACD的面積即可.

解答 解:(1)∵拋物線交x軸于A(-1,0)、B(5,0)兩點(diǎn),
∴設(shè)拋物線解析式為y=a(x+1)(x-5),
將C(0,-$\frac{20}{9}$)代入,得a=$\frac{4}{9}$,
故y=$\frac{4}{9}$(x+1)(x-5);
(2)由(1)知y=$\frac{4}{9}$(x+1)(x-5)=$\frac{4}{9}$(x-2)2-4,
故頂點(diǎn)D的坐標(biāo)為(2,-4),
設(shè)BD所在直線的解析式為:y=kx+b,
將B(5,0),D(2,-4)代入,
得:$\left\{\begin{array}{l}{5k+b=0}\\{2k+b=-4}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=\frac{4}{3}}\\{b=-\frac{20}{3}}\end{array}\right.$,
故BD所在直線解析式為:y=$\frac{4}{3}x-\frac{20}{3}$,
由點(diǎn)P在拋物線的對(duì)稱軸上,可設(shè)點(diǎn)P坐標(biāo)為:(2,m),
∵⊙P與x軸和直線BD都相切,
∴點(diǎn)P到x軸的距離等于點(diǎn)P到直線BD的距離,
即:|m|=$\frac{|\frac{8}{3}-m-\frac{20}{3}|}{\sqrt{(\frac{4}{3})^{2}+{1}^{2}}}$,
解得:m=-$\frac{3}{2}$或m=6,
故點(diǎn)P的坐標(biāo)為(2,-$\frac{3}{2}$)或(2,6);
(3)若△ABC是等腰三角形時(shí),
①若AB=AC,∵A(-1,0)、B(5,0),
∴OA=1,AC=AB=6,
在RT△AOC中,OC=$\sqrt{A{C}^{2}-O{A}^{2}}$=$\sqrt{35}$,
故C點(diǎn)坐標(biāo)為(0,-$\sqrt{35}$);
②若BA=BC,則BC=6,BO=5,
在RT△BOC中,OC=$\sqrt{B{C}^{2}-B{O}^{2}}$=$\sqrt{11}$,
故點(diǎn)C的坐標(biāo)為(0,-$\sqrt{11}$);
③CA=CB不符合題意;
綜上,若△ABC是等腰三角形時(shí),點(diǎn)C的坐標(biāo)為(0,-$\sqrt{35}$)或(0,-$\sqrt{11}$);
(4)△ACD與△ABC的面積之比為定值,
將A(-1,0)、B(5,0)兩點(diǎn)坐標(biāo)代入拋物線y=ax2+bx+c(a≠0),得:
$\left\{\begin{array}{l}{a-b+c=0}\\{25a+5b+c=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{b=-4a}\\{c=-5a}\end{array}\right.$,
故y=ax2-4ax-5a=a(x-2)2-9a,
則C點(diǎn)坐標(biāo)為(0,-5a),D(2,-9a),
如圖:

∵S△ABC=$\frac{1}{2}×6×5a$=15a,
S△ACD=(5a+9a)×2×$\frac{1}{2}$+$\frac{1}{2}×1×5a$-$\frac{1}{2}×3×9a$=3a,
∴$\frac{{S}_{△ACD}}{{S}_{△ABC}}=\frac{3a}{15a}=\frac{1}{5}$,
故△ACD與△ABC的面積之比為定值,定值為$\frac{1}{5}$.

點(diǎn)評(píng) 本題考查了二次函數(shù)解析式的確定、圓的切線性質(zhì)、等腰三角形、圖形面積的求法等知識(shí)點(diǎn),熟悉一些幾何基本性質(zhì)和做法是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知菱形ABCD對(duì)角線AC=8,BD=4,以AC、BD所在的直線為x軸、y軸建立平面直角坐標(biāo)系,雙曲線y=$\frac{k}{x}$恰好經(jīng)過(guò)DC的中點(diǎn),過(guò)直線BC上的點(diǎn)P作直線l⊥x軸,交雙曲線于點(diǎn)Q.
(1)求k的值及直線BC的函數(shù)解析式;
(2)雙曲線y=$\frac{k}{x}$與直線BC交于M、N兩點(diǎn),試求線段MN的長(zhǎng);
(3)是否存在點(diǎn)P,使以點(diǎn)B、P、Q、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出所有P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)的橫坐標(biāo)分別為-1,3,則下列結(jié)論正確的個(gè)數(shù)有( 。
①ac<0;②2a+b=0;③4a+2b+c>0;④對(duì)于任意x均有ax2+bx≥a+b.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系中,已知A、B、C三點(diǎn)的坐標(biāo)分別為A(-2,0),B(6,0),C(0,-3).
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)過(guò)C點(diǎn)作CD平行于x軸交拋物線于點(diǎn)D,寫(xiě)出D點(diǎn)的坐標(biāo),并求AD、BC的交點(diǎn)E的坐標(biāo);
(3)若拋物線的頂點(diǎn)為P,連結(jié)PC、PD.
①判斷四邊形CEDP的形狀,并說(shuō)明理由;
②若在拋物線上存在點(diǎn)Q,使直線OQ將四邊形PCED分成面積相等的兩個(gè)部分,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,四邊形ABCD的各頂點(diǎn)的坐標(biāo)分別為A(-2,0),B(3,0),C(2,4),D(-1,2).
(1)將各頂點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)各增加3,得到點(diǎn)A1、B1、C1、D1,寫(xiě)出A1、B1、C1、D1各點(diǎn)的坐標(biāo);
(2)若將點(diǎn)A1、B1、C1、D1依次連接起來(lái),得到四邊形A1B1C1D1,則四邊形A1B1C1D1與原四邊形ABCD相比有什么變化?
(3)若橫坐標(biāo)不變,縱坐標(biāo)各增加3,得到的四邊形A2B2C2D2與四邊形ABCD相比有什么變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖1,正方形ABCD與正方形AEFG的邊AB,AE(AB<AE)在一條直線上,正方形AEFG以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過(guò)程中,兩個(gè)正方形只有點(diǎn)A重合,其它頂點(diǎn)均不重合,連接BE,DG.

(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時(shí),求證:BE=DG;
(2)如圖3,如果α=45°,AB=2,AE=3$\sqrt{3}$.
①求BE的長(zhǎng);②求點(diǎn)A到BE的距離;
(3)當(dāng)點(diǎn)C落在直線BE上時(shí),連接FC,直接寫(xiě)出∠FCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在正常情況下,一個(gè)人在運(yùn)動(dòng)時(shí)所能承受的每分鐘心跳的最高次數(shù)S(次/分)與這個(gè)人年齡n(歲)滿足關(guān)系式:S=an+b,其中a、b均為常數(shù).
(1)根據(jù)圖中提供的信息,求a、b的值;
(2)若一位63歲的人在跑步,醫(yī)生在途中給他測(cè)得10秒心跳為26次,問(wèn):他是否有危險(xiǎn)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,點(diǎn)O、A、B在同一直線上,OC平分∠AOD,OE平分∠FOB,∠COF=∠DOE=90°.
(1)∠COD與∠EOF有什么數(shù)量關(guān)系?說(shuō)明理由.
答:∠COD=∠EOF,
理由如下:∵∠COF=∠DOE,
∴∠COF-∠DOF=∠DOE-∠DOF.
∴結(jié)論成立.
(2)∠AOC與∠BOF有什么數(shù)量關(guān)系?說(shuō)明理由.
理由如下:∵OC平分∠AOD,OE平分∠FOB,
∴∠COD=∠AOC,∠BOF=2∠EOF,
∵由(1)得到的∠COD與∠EOF關(guān)系.
∴∠AOC與∠BOF的數(shù)量關(guān)系為2∠AOC=∠BOF.
(3)求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,反比例函數(shù)y=$\frac{k}{x}$的圖象經(jīng)過(guò)點(diǎn)(-1,-2$\sqrt{2}$),點(diǎn)A是該圖象第一象限分支上的動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰直角三角形ABC,頂點(diǎn)C在第四象限,AC與x軸交于點(diǎn)D,當(dāng)$\frac{AD}{CD}$=$\sqrt{2}$時(shí),則點(diǎn)C的坐標(biāo)為(2,-$\sqrt{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案