如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).
(1)拋物線的解析式為:y=﹣x2+x+2
(2)存在,P1,4),P2),P3,﹣
(3)當(dāng)點E運動到(2,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=

試題分析:(1)將點A、C的坐標(biāo)分別代入可得二元一次方程組,解方程組即可得出m、n的值;
(2)根據(jù)二次函數(shù)的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P2,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;
(3)由二次函數(shù)的解析式可求出B點的坐標(biāo),從而可求出BC的解析式,從而可設(shè)設(shè)E點的坐標(biāo),進(jìn)而可表示出F的坐標(biāo),由四邊形CDBF的面積=SBCD+SCEF+SBEF可求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.
試題解析:(1)∵拋物線y=﹣x2+mx+n經(jīng)過A(﹣1,0),C(0,2).
解得:,
∴拋物線的解析式為:y=﹣x2+x+2;
(2)∵y=﹣x2+x+2,

∴y=﹣(x﹣2+,
∴拋物線的對稱軸是x=
∴OD=
∵C(0,2),
∴OC=2.
在Rt△OCD中,由勾股定理,得
CD=
∵△CDP是以CD為腰的等腰三角形,
∴CP1=CP2=CP3=CD.
作CH⊥x軸于H,
∴HP1=HD=2,
∴DP1=4.
∴P1,4),P2,),P3,﹣);
(3)當(dāng)y=0時,0=﹣x2+x+2
∴x1=﹣1,x2=4,
∴B(4,0).
設(shè)直線BC的解析式為y=kx+b,由圖象,得
,
解得:,
∴直線BC的解析式為:y=﹣x+2.
如圖2,過點C作CM⊥EF于M,設(shè)E(a,﹣a+2),F(xiàn)(a,﹣a2+a+2),
∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).
∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,
=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),
=﹣a2+4a+(0≤x≤4).
=﹣(a﹣2)2+
∴a=2時,S四邊形CDBF的面積最大=,
∴E(2,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,矩形OABC頂點B的坐標(biāo)為(8,3),定點D的坐標(biāo)為(12,0),動點P從點O出發(fā),以每秒2個單位長度的速度沿x軸的正方向勻速運動,動點Q從點D出發(fā),以每秒1個單位長度的速度沿x軸的負(fù)方向勻速運動,PQ兩點同時運動,相遇時停止.在運動過程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運動時間為t秒.
(1)當(dāng)t=    時,△PQR的邊QR經(jīng)過點B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過定點E(5,0)作EF⊥BC,垂足為F,當(dāng)△PQR的頂點R落在矩形OABC的內(nèi)部時,過點R作x軸、y軸的平行線,分別交EF、BC于點M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點,與y軸交于C點,點D在拋物線上且橫坐標(biāo)為3.
(1)求tan∠DBC的值;
(2)點P為拋物線上一點,且∠DBP=45°,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4與x軸的一個交點為A(-2,0),與y軸的交點為C,對稱軸是x=3,對稱軸與x軸交于點B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)經(jīng)過B,C的直線l平移后與拋物線交于點M,與x軸交于點N,當(dāng)以B,C,M,N為頂點的四邊形是平行四邊形時,求出點M的坐標(biāo);
(3)若點D在x軸上,在拋物線上是否存在點P,使得△PBD≌△PBC?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(點A在點B的左側(cè))點
A、點B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個根.
(1)請直接寫出點A、點B的坐標(biāo).
(2)請求出該二次函數(shù)表達(dá)式及對稱軸和頂點坐標(biāo).
(3)如圖1,在二次函數(shù)對稱軸上是否存在點P,使△APC的周長最小,若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
(4)如圖2,連接AC、BC,點Q是線段0B上一個動點(點Q不與點0、B重合).過點Q作QD∥AC交BC于點D,設(shè)Q點坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請寫出一個開口向下,對稱軸為直線的拋物線的解析式,y=                 .?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=
1
2
x2-x-
3
2

(1)求該拋物線的對稱軸和頂點坐標(biāo);
(2)求拋物線與x軸交點的坐標(biāo);
(3)畫出拋物線的示意圖;
(4)根據(jù)圖象回答:當(dāng)x在什么范圍時,y隨x的增大而增大?當(dāng)x在什么范圍時,y隨x的增大而減小?
(5)根據(jù)圖象回答:當(dāng)x為何值時,y>0;當(dāng)x為何值時,y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落下點C′處;作∠BPC′的平分線交AB于點E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB邊上的一個動點(不與點A、B重合),過點D作CD的垂線交射線CA于點E.設(shè)AD=x,CE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系圖象大致是( 。

查看答案和解析>>

同步練習(xí)冊答案