【題目】如圖,平行四邊形 ABCD 中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,連接 BD,將△BCD 繞點(diǎn) B 旋轉(zhuǎn),當(dāng) BD(即 BD′)與 AD 交于一點(diǎn) E,BC(即 BC′)同時(shí)與 CD 交于一點(diǎn) F 時(shí),下列結(jié)論正確的是( )
①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF 的周長(zhǎng)的最小值是4+2
A. ①② B. ②③ C. ①②④ D. ①②③④
【答案】C
【解析】
根據(jù)題意可證△ABE≌△BDF,可判斷①②③,由△DEF的周長(zhǎng)=DE+DF+EF=AD+EF=4+EF,則當(dāng)EF最小時(shí)△DEF的周長(zhǎng)最小,根據(jù)垂線段最短,可得BE⊥AD時(shí),BE最小,即EF最小,即可求此時(shí)△BDE周長(zhǎng)最小值.
∵AB=BC=CD=AD=4,∠A=∠C=60°,
∴△ABD,△BCD為等邊三角形,∴∠A=∠BDC=60°.
∵將△BCD繞點(diǎn)B旋轉(zhuǎn)到△BC'D'位置,
∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',
∴△ABE≌△BFD,
∴AE=DF,BE=BF,∠AEB=∠BFD,
∴∠BED+∠BFD=180°.
故①正確,③錯(cuò)誤;
∵∠ABD=60°,∠ABE=∠DBF,
∴∠EBF=60°.
故②正確;
∵△DEF的周長(zhǎng)=DE+DF+EF=AD+EF=4+EF,
∴當(dāng)EF最小時(shí).∵△DEF的周長(zhǎng)最。
∵∠EBF=60°,BE=BF,∴△BEF是等邊三角形,
∴EF=BE,
∴當(dāng)BE⊥AD時(shí),BE長(zhǎng)度最小,即EF長(zhǎng)度最小.
∵AB=4,∠A=60°,BE⊥AD,
∴EB=2,
∴△DEF的周長(zhǎng)最小值為4+2.
故④正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】像(+2)(﹣2)=1、=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……兩個(gè)含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱這兩個(gè)代數(shù)式互為有理化因式.例如,與, +1與﹣1,2+3與2﹣3等都是互為有理化因式.進(jìn)行二次根式計(jì)算時(shí),利用有理化因式,可以化去分母中的根號(hào).請(qǐng)完成下列問題:
(1)化簡(jiǎn):;
(2)計(jì)算:;
(3)比較與的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(3,0),與y軸交于點(diǎn)B,若△AOB的面積為6,且y隨x的增大而減小,試求這個(gè)一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全球氣候變暖導(dǎo)致-些冰川融化并消失,在冰川|消失12年后,一種低等植物苔蘚,就開始在巖石上生長(zhǎng),每一個(gè)苔蘚都會(huì)長(zhǎng)成近似的圓形,苔蘚的直徑和其生長(zhǎng)年限近似地滿足如下的關(guān)系式:d=7 (t≥12),其中d表示苔蘚的直徑,單位是厘米,t代表冰川消失的時(shí)間(單位:年)。
(1)計(jì)算冰川消失16年后苔蘚的直徑為多少厘米?
(2)如果測(cè)得一些苔蘚的直徑是35厘米,問冰川約是在多少年前消失的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是平行四邊形ABCD的對(duì)角線,E、H分別為邊BA和邊BC延長(zhǎng)線上的點(diǎn),連接EH交AD、CD于點(diǎn)F、G,且EH∥AC.
(1)求證:EG=FH;
(2)若△ACD是等腰直角三角形,∠ACD=90°,F(xiàn)是AD的中點(diǎn),AD=6,連接BF,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖像與反比例函數(shù)y= 的圖像交于點(diǎn)A﹙﹣2,﹣5﹚C﹙5,n﹚,交y軸于點(diǎn)B,交x軸于點(diǎn)D.
(1)求反比例函數(shù)y= 和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA,OC.求△AOC的面積.、
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算與解不等式
(1)計(jì)算:(3﹣π)0+2tan60°+(﹣1)2015﹣ .
(2)解不等式組: ,并把它的解在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)D為BC上一點(diǎn),且AD=DC,過A,B,D三點(diǎn)作⊙O,AE是⊙O的直徑,連結(jié)DE.
(1)求證:AC是⊙O的切線;
(2)若sinC= ,AC=6,求⊙O的直徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com