【題目】小明利用剛學過的測量知識來測量學校內(nèi)一棵古樹的高度。一天下午,他和學習小組的同學帶著測量工具來到這棵古樹前,由于有圍欄保護,他們無法到達古樹的底部B,如圖所示。于是他們先在古樹周圍的空地上選擇一點D,并在點D處安裝了測量器DC,測得古樹的頂端A的仰角為45°;再在BD的延長線上確定一點G,使DG=5米,并在G處的地面上水平放置了一個小平面鏡,小明沿著BG方向移動,當移動帶點F時,他剛好在小平面鏡內(nèi)看到這棵古樹的頂端A的像,此時,測得FG=2米,小明眼睛與地面的距離EF=1.6米,測傾器的高度CD=0.5米。已知點F、G、D、B在同一水平直線上,且EF、CD、AB均垂直于FB,求這棵古樹的高度AB。(小平面鏡的大小忽略不計)
【答案】這棵古樹的高AB為18m.
【解析】
如圖,過點C作CH⊥AB于點H,則CH=BD,BH=CD=0.5,繼而可得AB=BD+0.5,再證明△EFG∽△ABC,根據(jù)相似三角形的性質(zhì)得,即,由此求得BD長,即可求得AB長.
如圖,過點C作CH⊥AB于點H,
則CH=BD,BH=CD=0.5,
在Rt△ACH中,∠ACH=45°,
∴AH=CH=BD,
∴AB=AH+BH=BD+0.5,
∵EF⊥FB,AB⊥FB,
∴∠EFG=∠ABG=90°,
由題意,易知∠EGF=∠AGB,
∴△EFG∽△ABG,
∴,即,
解得:BD=17.5,
∴AB=17.5+0.5=18(m),
∴這棵古樹的高AB為18m.
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺為了解本地區(qū)電視節(jié)目的收視情況,對部分市民開展了“你最喜愛的電視節(jié)目”的問卷調(diào)查(每人只填寫一項),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖(如圖所示),根據(jù)要求回答下列問題:
(1)本次問卷調(diào)查共調(diào)查了________名觀眾;圖②中最喜愛“新聞節(jié)目”的人數(shù)占調(diào)查總?cè)藬?shù)的百分比為________;
(2)補全圖①中的條形統(tǒng)計圖;
(3)現(xiàn)有最喜愛“新聞節(jié)目”(記為),“體育節(jié)目”(記為),“綜藝節(jié)目”(記為),“科普節(jié)目”(記為)的觀眾各一名,電視臺要從四人中隨機抽取兩人參加聯(lián)誼活動,請用列表或畫樹狀圖的方法,求出恰好抽到最喜愛“”和“”兩位觀眾的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】成都市為了扎實推進精準扶貧工作,出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了2到5種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A,B,C,D類貧困戶,為檢查幫扶措施是否落實,隨機抽取了若干貧困戶進行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成如圖兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,回答下列問題:
(1)本次抽樣調(diào)查了多少戶貧困戶?
(2)成都市共有9100戶貧困戶,請估計至少得到4種幫扶措施的大約有多少戶?
(3)2020年是精準扶貧攻關年,為更好地做好工作,現(xiàn)準備從D類貧困戶中的甲、乙、丙、丁四戶中隨機選取兩戶進行試點幫扶,請用樹狀圖或列表法求出恰好選中乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當點H與點A重合時,EF=2.以上結論中,你認為正確的有( 。﹤.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于點A,B,AB=2,與y軸交于點C,對稱軸為直線x=2.
(1)求拋物線的函數(shù)表達式;
(2)設D為拋物線的頂點,連接DA、DB,試判斷△ABD的形狀,并說明理由;
(3)設P為對稱軸上一動點,要使PC﹣PB的值最大,求出P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,BC=5,∠ABC=60°. 按以下步驟作圖:①以C為圓心,以適當長為半徑做弧,交CB、CD于M、N兩點;②分別以M、N為圓心,以大于MN的長為半徑作弧,兩弧相交于點E,作射線CE交BD于點O,交AD邊于點F;則BO的長度為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,單位長度為1的網(wǎng)格坐標系中,一次函數(shù) 與坐標軸交于A、B兩點,反比例函數(shù)(x>0)經(jīng)過一次函數(shù)上一點C(2,a).
(1)求反比例函數(shù)解析式,并用平滑曲線描繪出反比例函數(shù)圖像;
(2)依據(jù)圖像直接寫出當時不等式的解集;
(3)若反比例函數(shù)與一次函數(shù)交于C、D兩點,使用直尺與2B鉛筆構造以C、D為頂點的矩形,且使得矩形的面積為10.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在中,,點在邊上,點在邊上,,過點作交的延長線于點.
(1)如圖1,當時:①的度數(shù)為__________;②求證;;
(2)如圖2,當時,求的值(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場秋季計劃購進一批進價為每件40元的恤進行銷售.
(1)根據(jù)銷售經(jīng)驗,應季銷售時,若每件恤的售價為60元,可售出400件;若每件恤的售價每提高1元,銷售量相應減少10件.
①假設每件恤的售價提高元,那么銷售每件恤所獲得的利潤是 元,銷售量是 件(用含的代數(shù)式表示);
②設應季銷售利潤為元,請寫與的函數(shù)關系式;并求出應季銷售利潤為8000元時每件恤的售價.
(2)根據(jù)銷售經(jīng)驗,過季處理時,若每件恤的售價定為30元虧本銷售,可售出50件;若每件恤的售價每降低1元,銷售量相應增加5條.
①若剩余100件恤需要處理,經(jīng)過降價處理后還是無法銷售的只能積壓在倉庫,損失本金;若使虧損金額最小,每件恤的售價應是多少元?
②若過季需要處理的恤共件,且,季虧損金額最小是 元(用含的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com