【題目】如圖1,已知平行四邊形ABCD頂點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B在y軸上,且AD∥BC∥x軸,過B,C,D三點(diǎn)的拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,2),點(diǎn)F(m,6)是線段AD上一動(dòng)點(diǎn),直線OF交BC于點(diǎn)E.

(1)求拋物線的表達(dá)式;

(2)設(shè)四邊形ABEF的面積為S,請(qǐng)求出S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

(3)如圖2,過點(diǎn)F作FMx軸,垂足為M,交直線AC于P,過點(diǎn)P作PNy軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點(diǎn)H,G,試求線段MN的最小值,并直接寫出此時(shí)m的值.

【答案】(1)拋物線解析式為y=x2x+3;(2S=m32m≤6);(3)當(dāng)m=時(shí),MN最小=

【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)和拋物線的特點(diǎn)確定出點(diǎn)D,然而用待定系數(shù)法確定出拋物線的解析式.(2)根據(jù)AD∥BC∥x軸,且AD,BC間的距離為3,BC,x軸的距離也為3,Fm,6),確定出E,3),從而求出梯形的面積.(3)先求出直線AC解析式,然后根據(jù)FM⊥x軸,表示出點(diǎn)Pm,m+9),最后根據(jù)勾股定理求出MN=,從而確定出MN最大值和m的值.

試題解析:(1B,CD三點(diǎn)的拋物線y=ax2+bx+ca≠0)的頂點(diǎn)坐標(biāo)為(2,2),

點(diǎn)C的橫坐標(biāo)為4BC=4,

四邊形ABCD為平行四邊形,

∴AD=BC=4,

∵A2,6),

∴D66),

設(shè)拋物線解析式為y=ax﹣22+2

點(diǎn)D在此拋物線上,

∴6=a6﹣22+2,

∴a=,

拋物線解析式為y=x﹣22+2=x2﹣x+3

2∵AD∥BC∥x軸,且ADBC間的距離為3,BCx軸的距離也為3,Fm6

∴E3),

∴BE=

∴S=AF+BE×3=m﹣2+×3=m﹣3

點(diǎn)Fm,6)是線段AD上,

∴2≤m≤6,

即:S=m﹣32≤m≤6).

3拋物線解析式為y=x2﹣x+3

∴B0,3),C43),

∵A2,6),

直線AC解析式為y=﹣x+9

∵FM⊥x軸,垂足為M,交直線ACP

∴Pm,m+9),(2≤m≤6

∴PN=m,PM=﹣m+9,

∵FM⊥x軸,垂足為M,交直線ACP,過點(diǎn)PPN⊥y軸,

∴∠MPN=90°

∴MN===

∵2≤m≤6,

當(dāng)m=時(shí),MN最小==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD,點(diǎn)M、N分別是AB、CD上兩點(diǎn),點(diǎn)GABCD之間,連接MG、NG

1)如圖1,若GMGN,求∠AMG+∠CNG的度數(shù);

2)如圖2,若點(diǎn)PCD下方一點(diǎn),MG平分∠BMP,ND平分∠GNP,已知∠BMG30°,求∠MGN+∠MPN的度數(shù);

3)如圖3,若點(diǎn)EAB上方一點(diǎn),連接EM、EN,且GM的延長(zhǎng)線MF平分∠AME,NE平分∠CNG,2MEN+∠MGN105°,求∠AME的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某飛機(jī)于空中探測(cè)某座山的高度,在點(diǎn)A處飛機(jī)的飛行高度是AF=3700米,從飛機(jī)上觀測(cè)山頂目標(biāo)C的俯角是45°,飛機(jī)繼續(xù)以相同的高度飛行300米到B處,此時(shí)觀測(cè)目標(biāo)C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°,AB=6cm,BC=8cm點(diǎn)P從點(diǎn)A開始沿AB邊向B1cm/s的速度移動(dòng),點(diǎn)QB點(diǎn)開始沿BC邊向點(diǎn)C2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),

1)如果P、Q同時(shí)出發(fā),幾秒后,可使PBQ的面積為8平方厘米?

2)線段PQ能否將ABC分成面積相等的兩部分?若能,求出運(yùn)動(dòng)時(shí)間;若不能說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光明中學(xué)七年級(jí)1班同學(xué)積極響應(yīng)陽光體育工程的號(hào)召,利用課外活動(dòng)時(shí)間積極參加體育鍛煉,每位同學(xué)從長(zhǎng)跑、籃球、鉛球、立定跳遠(yuǎn)中選一項(xiàng)進(jìn)行訓(xùn)練,訓(xùn)練前后都進(jìn)行了測(cè)試.現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時(shí)定點(diǎn)投籃測(cè)試成績(jī)整理后作出如下統(tǒng)計(jì)圖表.

項(xiàng)目選擇情況統(tǒng)計(jì)圖訓(xùn)練后籃球定時(shí)定點(diǎn)投籃測(cè)試進(jìn)球數(shù)統(tǒng)計(jì)表

進(jìn)球數(shù)(個(gè)

8

7

6

5

4

3

人數(shù)

2

1

4

7

8

2

請(qǐng)你根據(jù)圖表中的信息回答下列問題:

(1)選擇長(zhǎng)跑訓(xùn)練的人數(shù)占全班人數(shù)的百分比是_____%,該班共有同學(xué)_____人;

(2)求訓(xùn)練后籃球定時(shí)定點(diǎn)投籃人均進(jìn)球數(shù);

(3)根據(jù)測(cè)試資料,訓(xùn)練后籃球定時(shí)定點(diǎn)投籃的人均進(jìn)球數(shù)比訓(xùn)練之前人均進(jìn)球數(shù)增加25%.請(qǐng)求出參加訓(xùn)練之前的人均進(jìn)球數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測(cè)量一個(gè)圓鐵環(huán)的半徑,某同學(xué)用了如下方法,將鐵環(huán)平放在水平桌面上,用有一個(gè)角為30°的直角三角板和刻度尺按如圖所示的方法得到相關(guān)數(shù)據(jù),進(jìn)而求出鐵環(huán)半徑,若測(cè)得PA=5cm,則鐵環(huán)的半徑是_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(6,0),(6,8).動(dòng)點(diǎn)M、N分別從O、B同時(shí)出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng).其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)N作NPBC,交AC于P,連接MP.已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.

(1)P點(diǎn)的坐標(biāo)為多少;(用含x的代數(shù)式表示)

(2)試求MPA面積的最大值,并求此時(shí)x的值;

(3)請(qǐng)你探索:當(dāng)x為何值時(shí),MPA是一個(gè)等腰三角形?你發(fā)現(xiàn)了幾種情況?寫出你的研究成果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到ADE,點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在BA的延長(zhǎng)線上,DEBC交于點(diǎn)F,連接BD.下列結(jié)論不一定正確的是(  )

A. AD=BD B. ACBD C. DF=EF D. CBD=E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACD中,∠ACD=60°,以AC為邊作等腰三角形ABC,AB=AC,EF分別為邊CD、BC上的點(diǎn),連結(jié)AE、AF、EF,∠BAC=EAF=60°

1)求證:ABF≌△ACE

2)若∠AED=70°,求∠EFC的度數(shù);

3)請(qǐng)直接指出:當(dāng)F點(diǎn)在BC何處時(shí),ACEF

查看答案和解析>>

同步練習(xí)冊(cè)答案