【題目】觀察如圖所示的圖形,并閱讀相關(guān)文字信息后回答下列問題:

2條直線相交,最多有1個(gè)交點(diǎn);3條直線相交,最多有3個(gè)交點(diǎn);4條直線相交,最多有6個(gè)交點(diǎn)

(1)8條直線相交最多有幾個(gè)交點(diǎn)?

(2)設(shè)有n條直線相交,最多有y個(gè)交點(diǎn)請用含n的代數(shù)式表示y.

(3)當(dāng)最多交點(diǎn)個(gè)數(shù)為4950時(shí),此時(shí)直線有幾條?

【答案】(1)28;(2);(3)100

【解析】試題分析:先觀察圖形,找出交點(diǎn)的個(gè)數(shù)與直線的條數(shù)之間的關(guān)系,然后進(jìn)行計(jì)算即可.

試題解析: (1)每增加一條直線,只要保證這條直線與原有的每一條直線都交于不同的點(diǎn),就能使交點(diǎn)的個(gè)數(shù)最多

當(dāng)8條直線相交時(shí),最多交點(diǎn)個(gè)數(shù)為123456728.

(2)y123+…+(n1).

(3)當(dāng)y4950時(shí),4950,

n(n1)9900100×99n>0,

n100,即此時(shí)直線有100條.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)D的坐標(biāo)為(1,﹣),且與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),A點(diǎn)的坐標(biāo)為(4,0).P點(diǎn)是拋物線上的一個(gè)動點(diǎn),且橫坐標(biāo)為m.

(1)求拋物線所對應(yīng)的二次函數(shù)的表達(dá)式.

(2)若動點(diǎn)P滿足PAO不大于45°,求P點(diǎn)的橫坐標(biāo)m的取值范圍.

(3)是否存在P點(diǎn),使PAC=BCO?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市去年有4.7萬名考生參加了中考,為了解這些考生的數(shù)學(xué)成績,從中抽取了4000名考生的數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì)分析,以下說法正確的是(

A. 這4000名考生是總體的一個(gè)樣本

B. 這4.7萬名考生的數(shù)學(xué)成績是總體

C. 每位考生是個(gè)體

D. 抽取的4000名考生是樣本容量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等腰直角三角形ABC,∠BAC=90°,P△ABC內(nèi)一點(diǎn),PA=1,PB=3,PC=.∠CPA的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD,點(diǎn)E,G分別在邊AB,對角線BD,EG∥AD,F(xiàn)GD的中點(diǎn),連結(jié)FC,請利用勾股定理的逆定理,證明EF⊥FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為治理大氣污染,保護(hù)人民健康.某市積極行動,調(diào)整產(chǎn)業(yè)結(jié)構(gòu),壓減鋼鐵生產(chǎn)總量,2013年某市鋼鐵生產(chǎn)量為9700萬噸,計(jì)劃到2015年鋼鐵生產(chǎn)量設(shè)定為5000萬噸,設(shè)該市每年鋼鐵生產(chǎn)量平均降低率為x,依題意,下面所列方程正確的是( )
A.9700(1﹣2x)=5000
B.5000(1+x)2=9700
C.5000(1﹣2x)=9700
D.9700(1﹣x)2=5000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2x3y2和-x3myn是同類項(xiàng),則式子4m-2n的值是( )

A. -1 B. 0 C. 2 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BC=1,CBD=60°,點(diǎn)E是AB邊上一動點(diǎn)(不與點(diǎn)A,B重合),連接DE,過點(diǎn)D作DFDE交BC的延長線于點(diǎn)F,連接EF交CD于點(diǎn)G.

(1)求證:ADE∽△CDF;

(2)求DEF的度數(shù);

(3)設(shè)BE的長為x,BEF的面積為y.

求y關(guān)于x的函數(shù)關(guān)系式,并求出當(dāng)x為何值時(shí),y有最大值;

當(dāng)y為最大值時(shí),連接BG,請判斷此時(shí)四邊形BGDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:某社區(qū)超市第一次用6000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的 倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)﹣進(jìn)價(jià))

進(jìn)價(jià)(元/件)

22

30

售價(jià)(元/件)

29

40


(1)該超市將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(2)該超市第二次以第一次的進(jìn)價(jià)又購進(jìn)甲、乙兩種商品.其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售.第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多180元,求第二次乙種商品是按原價(jià)打幾折銷售?

查看答案和解析>>

同步練習(xí)冊答案