【題目】(題文)如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)A(﹣4,m),且與y軸交于點(diǎn)B,第一象限內(nèi)點(diǎn)C在反比例函數(shù)的圖象上,且以點(diǎn)C為圓心的圓與x軸,y軸分別相切于點(diǎn)D,B

(1)求m的值;

(2)求一次函數(shù)的表達(dá)式;

(3)根據(jù)圖象,當(dāng)<0時(shí),寫出x的取值范圍.

【答案】(1)m=-1;(2) y1=x+2;(3) x<﹣4.

【解析】試題(1)直接將A點(diǎn)代入反比例函數(shù)解析式求出答案;

2)直接利用切線的性質(zhì)結(jié)合正方形的判定與性質(zhì)得出C,B點(diǎn)坐標(biāo),進(jìn)而利用待定系數(shù)法求出一次函數(shù)解析式;

3)利用A點(diǎn)坐標(biāo)結(jié)合函數(shù)圖象得出x的取值范圍.

試題解析:(1)把點(diǎn)A(﹣4,m)的坐標(biāo)代入,則m==﹣1,得m=﹣1;

2)連接CB,CD,∵⊙Cx軸,y軸相切于點(diǎn)D,B,∴∠CBO=∠CDO=90°=∠BOD,BC=CD,∴四邊形BODC是正方形,∴BO=OD=DC=CB,∴設(shè)Caa)代入得:,∵a0,∴a=2,∴C2,2),B0,2),把A(﹣4,﹣1)和(02)的坐標(biāo)代入中,得:,解得:,∴一次函數(shù)的表達(dá)式為:;

3)∵A(﹣4,﹣1),∴當(dāng)時(shí),x的取值范圍是:x<﹣4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎和小紅兩名同學(xué)在學(xué)習(xí)“概率”時(shí)做擲骰子(質(zhì)地均勻的正方體)試驗(yàn).

朝上的點(diǎn)數(shù)

1

2

3

4

5

6

出現(xiàn)的次數(shù)

7

9

6

8

20

10

(1)她們?cè)谝淮卧囼?yàn)中共擲骰子60試驗(yàn)的結(jié)果如下:

①填空:此次試驗(yàn)中“5點(diǎn)朝上”的頻率為________;

②小紅說:“根據(jù)試驗(yàn)出現(xiàn)5點(diǎn)的概率最大.”她的說法正確嗎?為什么?

(2)小穎和小紅在試驗(yàn)中如果各擲一枚骰子,那么兩枚骰子朝上的點(diǎn)數(shù)之和為多少時(shí)的概率最大?試用列表法或畫樹狀圖法加以說明,并求出其概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個(gè)長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個(gè)小長方形,然后按圖的方式拼成一個(gè)正方形.

(1)按要求填空:

你認(rèn)為圖中的陰影部分的正方形的邊長等于   

請(qǐng)用兩種不同的方法表示圖中陰影部分的面積:

方法1:   

方法2:   

觀察圖,請(qǐng)寫出代數(shù)式(m+n)2,(m﹣n)2,mn這三個(gè)代數(shù)式之間的等量關(guān)系:   ;

(2)根據(jù)(1)題中的等量關(guān)系,解決如下問題:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.

(3)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖,它表示了   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,第一次將OAB變換成OA1B1,第二次將OA1B1變換成OA2B2,第三次將OA2B2變換成OA3B3,已知A1,3),A12,3),A24,3),A38,3),B2,0),B14,0),B28,0),B316,0).將OAB進(jìn)行n次變換得到OAnBn,則An___,__),Bn_____,_____).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)ABC中,H是高ADBE的交點(diǎn),且AD=BD.

(1)請(qǐng)你猜想BHAC的關(guān)系,并說明理由;

(2)若將圖(1)中的∠A改成鈍角,請(qǐng)你在圖(2)中畫出該題的圖形,此時(shí)(1)中的結(jié)論還成立嗎?(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2mA處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度ym)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場的邊界距O點(diǎn)的水平距離為18m。

1)當(dāng)h=2.6時(shí),求yx的關(guān)系式(不要求寫出自變量x的取值范圍)

2)當(dāng)h=2.6時(shí),球能否越過球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說明理由;

3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知小正方形 ABCD 的面積為1,把它的各邊延長一倍得到新正方形 A 1 B 1 C 1 D 1 ;把正方形 A 1 B 1 C 1 D 1 邊長按原法延長一倍得到正方形 A 2 B 2 C 2 D 2 (如圖(2));以此下去,則正方形 A n B n C n D n 的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, ,EM平分,并與CD邊交于點(diǎn)MDN平分,

并與EM交于點(diǎn)N

1)依題意補(bǔ)全圖形,并猜想的度數(shù)等于  ;

2)證明以上結(jié)論.

證明:∵ DN平分EM平分,

     

   (理由:

,

   ×    )=  ×90°   °

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k為常數(shù),k≠0)的圖象交于A、B兩點(diǎn),過點(diǎn)AACx軸,垂足為C,連接OA,已知OC=2,tanAOC=,B(m,﹣2)

(1)求一次函數(shù)和反比例函數(shù)的解析式.

(2)結(jié)合圖象直接寫出:當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案