【題目】已知△ABC是等邊三角形,AD⊥BC于點D,點E是直線AD上的動點,將BE繞點B順時針方向旋轉(zhuǎn)60°得到BF,連接EF、CF、AF.
(1)如圖1,當點E在線段AD上時,猜想∠AFC和∠FAC的數(shù)量關(guān)系;(直接寫出結(jié)果)
(2)如圖2,當點E在線段AD的延長線上時,(1)中的結(jié)論還成立嗎?若成立,請證明你的結(jié)論,若不成立,請寫出你的結(jié)論,并證明你的結(jié)論;
(3)點E在直線AD上運動,當△ACF是等腰直角三角形時,請直接寫出∠EBC的度數(shù).
【答案】(1)∠AFC+∠FAC=90°,見解析;(2)仍成立,見解析;(3)15°
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)可得BE=BF,∠EBF=60°,由“SAS”可證△ABE≌△CBF,可得∠BAE=∠BCF=30°,由直角三角形的性質(zhì)可得結(jié)論;
(2)由旋轉(zhuǎn)的性質(zhì)可得BE=BF,∠EBF=60°,由“SAS”可證△ABE≌△CBF,可得∠BAE=∠BCF=30°,由直角三角形的性質(zhì)可得結(jié)論;
(3)由全等三角形的性質(zhì)和等邊三角形的性質(zhì)可得AB=AE,由等腰三角形的性質(zhì)可求解.
解:(1)∠AFC+∠FAC=90°,
理由如下:連接AF,
∵△ABC是等邊三角形,
∴AB=AC=BC,∠ABC=∠BAC=∠ACB=60°,
∵AB=AC,AD⊥BC,
∴∠BAD=30°,
∵將BE繞點B順時針方向旋轉(zhuǎn)60°得到BF,
∴BE=BF,∠EBF=60°,
∴∠EBF=∠ABC,
∴∠ABE=∠FBC,且AB=BC,BE=BF,
∴△ABE≌△CBF(SAS)
∴∠BAE=∠BCF=30°,
∴∠ACF=90°,
∴∠AFC+∠FAC=90°;
(2)結(jié)論仍然成立,
理由如下:∵△ABC是等邊三角形,
∴AB=AC=BC,∠ABC=∠BAC=∠ACB=60°,
∵AB=AC,AD⊥BC,
∴∠BAD=30°,
∵將BE繞點B順時針方向旋轉(zhuǎn)60°得到BF,
∴BE=BF,∠EBF=60°,
∴∠EBF=∠ABC,
∴∠ABE=∠FBC,且AB=BC,BE=BF,
∴△ABE≌△CBF(SAS)
∴∠BAE=∠BCF=30°,
∴∠ACF=90°,
∴∠AFC+∠FAC=90°;
(3)∵△ACF是等腰直角三角形,
∴AC=CF,
∵△ABE≌△CBF,
∴CF=AE,
∴AC=AE=AB,
∴∠ABE==75°,
∴∠EBC=∠ABE﹣∠ABC=15°.
科目:初中數(shù)學 來源: 題型:
【題目】某次數(shù)學競賽共有3道判斷題,認為正確的寫“”,錯誤的寫“”,小明在做判斷題時,每道題都在“”或“”中隨機寫了一個.
(1)小明做對第1題的概率是 ;
(2)求小明這3道題全做對的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形ABCD中,∠ACB=30°,將△ACD繞C點順時針旋轉(zhuǎn)α(0°<α<360°)至△A'CD'位置.
(1)如圖2,若AB=2,α=30°,求S△BCD′.
(2)如圖3,取AA′中點O,連OB、OD′、BD′.若△OBD′存在,試判定△OBD′的形狀.
(3)當α=α1時,OB=OD′,則α1= °;當α=α2時,△OBD′不存在,則α2= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)新浪網(wǎng)調(diào)查,2019年全國網(wǎng)民最關(guān)注的熱點話題分別有:消費、教育、環(huán)保、反腐及其它共五類,且關(guān)注五類熱點問題的網(wǎng)民的人數(shù)所占百分比如圖1所示,關(guān)注該五類熱點問題網(wǎng)民的人數(shù)的不完整條形統(tǒng)計如圖2,請根據(jù)圖中信息解答下列問題.
(1)求出圖1中關(guān)注“反腐”類問題的網(wǎng)民所占百分比x的值,并將圖2中的不完整的條形統(tǒng)計圖補充完整;
(2)為了深度了解網(wǎng)民對政府工作報告的想法,新浪網(wǎng)邀請5名網(wǎng)民代表甲、乙、丙、丁、戊做客新浪訪談,且一次訪談只選2名代表.請你用列表法或畫樹狀圖的方法,求出一次所選代表恰好是丙和丁的概率.
(3)據(jù)統(tǒng)計,2017年網(wǎng)民最關(guān)注教育問題的人數(shù)所占百分比約為10%,則從2017年到2019年的年平均增長率約為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小圓O的半徑為1,△A1B1C1,△A2B2C2,△A3B3C3,…,△AnBnn依次為同心圓O的內(nèi)接正三角形和外切正三角形,由弦A1C1和弧A1C1圍成的弓形面積記為S1,由弦A2C2和弧A2C2圍成的弓形面積記為S2,…,以此下去,由弦Ann和弧Ann圍成的弓形面積記為Sn,其中S2020的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近年來,移動支付已成為主要支付方式之一.為了解某校800名學生上個月A,B兩種移動支付方式的使用情況,從全校學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
下面有四個推斷:
①從全校學生中隨機抽取1人,該學生上個月僅使用A支付的概率為0.3;
②從全校學生中隨機抽取1人,該學生上個月A,B兩種支付方式都使用的概率為0.45;
③估計全校僅使用B支付的學生人數(shù)為200人;
④這100名學生中,上個月僅使用A和僅使用B支付的學生支付金額的中位數(shù)為800元.
其中合理推斷的序號是( )
A.①②B.①③C.①④D.②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是直徑AB所對的半圓弧,點C在上,且∠CAB =30°,D為AB邊上的動點(點D與點B不重合),連接CD,過點D作DE⊥CD交直線AC于點E.
小明根據(jù)學習函數(shù)的經(jīng)驗,對線段AE,AD長度之間的關(guān)系進行了探究.
下面是小明的探究過程,請補充完整:
(1)對于點D在AB上的不同位置,畫圖、測量,得到線段AE,AD長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | ||
AE/cm | 0.00 | 0.41 | 0.77 | 1.00 | 1.15 | 1.00 | 0.00 | 1.00 | 4.04 | … |
AD/cm | 0.00 | 0.50 | 1.00 | 1.41 | 2.00 | 2.45 | td style="width:10%; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">3.21 | 3.50 | … |
在AE,AD的長度這兩個量中,確定_______的長度是自變量,________的長度是這個自變量的函數(shù);
(2)在下面的平面直角坐標系中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當AE=AD時,AD的長度約為________cm(結(jié)果精確到0.1).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,
FD⊥BC,則△DEF的面積與△ABC的面積之比等于( )
A.1∶3 B.2∶3 C.∶2 D.∶3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某數(shù)學活動小組為測量學校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度 的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com