【題目】如圖,拋物線軸相交于點(diǎn),與軸相交于兩點(diǎn),點(diǎn)是線段上的一個(gè)動點(diǎn),過軸交于點(diǎn),交拋物線于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).

(1)求拋物線的解析式.

(2)當(dāng)四邊形是平行四邊形時(shí),求點(diǎn)的坐標(biāo).

(3)設(shè)的面積為,的面積為,當(dāng)時(shí),求的值.

【答案】(1);(2;(3.

【解析】

1)利用待定系數(shù)法求出拋物線的解析式即可;

2)利用四邊形是平行四邊形,得出,設(shè),得出點(diǎn)坐標(biāo)為,代入到拋物線解析式中得出即可.

3)過軸,交,設(shè),,則,表示出兩點(diǎn)的坐標(biāo),利用求出,進(jìn)而求出的面積,從而打出答案.

解:(1)∵拋物線過點(diǎn)

,解得

2)∵

∵四邊形是平行四邊形

設(shè),則

∴點(diǎn)坐標(biāo)為

,解得(舍去),

3)過軸,交,設(shè),則,直線的表達(dá)式為:

得:得,得,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3BC4,點(diǎn)E為射線CB上一動點(diǎn)(不與點(diǎn)C重合),將△CDE沿DE所在直線折疊,點(diǎn)C落在點(diǎn)C′處,連接AC′,當(dāng)△ACD為直角三角形時(shí),CE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小澤和小帥兩同學(xué)分別從甲地出發(fā),騎自行車沿同一條路到乙地參加社會實(shí)踐活動.如圖折線和線段分別表示小澤和小帥離甲地的距離(單位:千米)與時(shí)間(單位:小時(shí))之間函數(shù)關(guān)系的圖象,則當(dāng)小帥到達(dá)乙地時(shí),小澤距乙地的距離為_________千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)定義:如圖1,點(diǎn)E在四邊形ABCD的邊CD上,若AE、BE將四邊形ABCD分割成三個(gè)相似的三角形,則稱點(diǎn)E為該四邊形的相似點(diǎn).

1)若相似點(diǎn)在四邊形ABCD的邊CD上, AEBE將四邊形ABCD分割成三個(gè)正三角形,則四邊形ABCD的四邊形之比(按邊長從小到大排序)_______

2)若相似點(diǎn)在四邊形ABCD的邊CD上,且AE、BE將四邊形ABCD分割成三個(gè)全等的等腰直角三角形,則四邊形ABCD的四邊形之比(按邊長從小到大排序)_______

3)(探索研究)

如圖2,點(diǎn)E為四邊形ABCD邊上的相似點(diǎn),且AE、BE將四邊形ABCD分割成三個(gè)全等的三角形,已知∠ABC=90°AD=AB=BC=2,求邊CD的長.

4)(問題解決)

如圖3,在四邊形ABCD中,ABCD,點(diǎn)E為四邊形ABCD的邊CD上的相似點(diǎn),且AD=a,AB=b,BC=c(其中a≠c),此時(shí)邊CD的長為多少?請用含ab、c的代數(shù)式直接寫出所有可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商從批發(fā)市場用8000元購進(jìn)了大櫻桃和小櫻桃各200千克,大櫻桃的進(jìn)價(jià)比小櫻桃的進(jìn)價(jià)每千克多20元.大櫻桃售價(jià)為每千克40元,小櫻桃售價(jià)為每千克16元.

(1)大櫻桃和小櫻桃的進(jìn)價(jià)分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?

(2)該水果商第二次仍用8000元錢從批發(fā)市場購進(jìn)了大櫻桃和小櫻桃各200千克,進(jìn)價(jià)不變,但在運(yùn)輸過程中小櫻桃損耗了20%.若小櫻桃的售價(jià)不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價(jià)最少應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,和過點(diǎn)的切線互相垂直,垂足為,直線交于點(diǎn),于點(diǎn)

1)求證:平分;

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABO的直徑,CO上一點(diǎn),CDABD,EBA廷長線上一點(diǎn),連接CE,∠ACE=∠ACD,K是線段AO上一點(diǎn),連接CK并延長交O于點(diǎn)F

1)求證:CEO的切線;

2)若ADDK,求證:AKAOKBAE;

3)如圖2,若AEAK,,點(diǎn)GBC的中點(diǎn),AGCF交于點(diǎn)P,連接BP.請猜想PA,PB,PF的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校1000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了200名學(xué)生的成績(成績取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

成績/

頻數(shù)

頻率

10

0.05

20

0.10

30

0.30

80

0.40

請根據(jù)所給的信息,解答下列問題:

1__________;

2)請補(bǔ)全頻數(shù)分布直方圖;

3)這次比賽成績的中位數(shù)會落在______分?jǐn)?shù)段;

4)若成績在90分以上(包括90分)的為優(yōu)等,則該校參加這次比賽的1000名學(xué)生中成績優(yōu)等的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為的拋物線軸的另一個(gè)交點(diǎn)為,連接

1)求拋物線的函數(shù)表達(dá)式;

2)已知點(diǎn)的坐標(biāo)為,將拋物線向上平移得到拋物線,拋物線軸分別交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),如果相似,求所有符合條件的拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案