【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(2,0)和B(t,0)(t≥2),與y軸交于點(diǎn)C,直線l:y=x+2t經(jīng)過(guò)點(diǎn)C,交x軸于點(diǎn)D,直線AE交拋物線于點(diǎn)E,且有∠CAE=∠CDO,作CF⊥AE于點(diǎn)F.

(1)求∠CDO的度數(shù);
(2)求出點(diǎn)F坐標(biāo)的表達(dá)式(用含t的代數(shù)式表示);
(3)當(dāng)SCOD﹣S四邊形COAF=7時(shí),求拋物線解析式;
(4)當(dāng)以B,C,O三點(diǎn)為頂點(diǎn)的三角形與△CEF相似時(shí),請(qǐng)直接寫(xiě)出t的值.

【答案】
(1)

解:∵直線l:y=x+2t與y軸點(diǎn)C,交x軸于點(diǎn)D,

∴C(0,2t),D(﹣2t,0)

∴OC=OD,

∵∠COD=90°,

∴∠CDO=∠DCO=45°.


(2)

解:如圖1,作FG⊥x軸于點(diǎn)G,F(xiàn)H⊥y軸于點(diǎn)H,

∵∠HOG=∠OGF=∠FHO=90°,

∴四邊形OGFH是矩形

∴∠HFG=90°,

∴∠HFA+∠AFG=90°

又∵CF⊥AE,

∴∠CFH+∠HFA=90°

∴∠CFH=∠AFG,

又∵∠CAE=∠CDO=45°,

∴∠FCA=45°,

∴CF=AF,

又∵∠FGA=∠CHF=90°,

在△FGA和△FHC中,

∴△FGA≌△FHC,

∴FH=FG,HC=AG,

設(shè)F(m,m)

則2t﹣m=m﹣2,

得m=t+1,

∴F(t+1,t+1).


(3)

解:∵SCOD﹣S四邊形COAF=SCOD﹣S正方形HOGF=7

=7,

解得:t=4或﹣2(舍去),

則A點(diǎn)坐標(biāo)(2,0),B點(diǎn)坐標(biāo)(4,0),C點(diǎn)坐標(biāo)(0,8)

設(shè)y=a(x﹣2)(x﹣4),

把C(0,8)代入y=a(x﹣2)(x﹣4),

解得a=1,

∴y=(x﹣2)(x﹣4)=x2﹣6x+8.


(4)

解:t=3或2.

如圖2,作ET⊥HF于T,

求得:E的橫坐標(biāo)是 ,CH=t﹣1,F(xiàn)T= ,

由△HCF∽△TFE,

得:

當(dāng)△OBC∽△FEC時(shí), =2,

=2,

解得:t=3或t=﹣1( 舍去),

當(dāng)△OBC∽△FCE時(shí),

,

解得:t=2或t=0(舍去).

∴t=3或2.


【解析】(1)求出點(diǎn)C,D的坐標(biāo),得到OC=OD,即可解答;(2)如圖1,作FG⊥x軸于點(diǎn)G,F(xiàn)H⊥y軸于點(diǎn)H,利用已知條件證明△FGA≌△FHC,得到FH=FG,HC=AG,設(shè)F(m,m)則2t﹣m=m﹣2,求出m的值,即可解答;(3)如圖2,作ET⊥HF于T,分別得到E的橫坐標(biāo)是 ,CH=t﹣1,F(xiàn)T= ,再由△HCF∽△TFE,得到 ,即 ,分類討論:當(dāng)△OBC∽△FEC時(shí);當(dāng)△OBC∽△FCE時(shí);求出t的值,即可解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,AC和BD相交于點(diǎn)E,且DC2=CECA.
(1)求證:BC=CD;
(2)分別延長(zhǎng)AB,DC交于點(diǎn)P,若PB=OB,CD=2 ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),直線MN經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)A作直線MN的垂線,垂足為點(diǎn)D,且AC平分∠BAD.

(1)求證:直線MN是⊙O的切線;
(2)若CD=4,AC=5,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】六一前夕,某幼兒園園長(zhǎng)到廠家選購(gòu)A、B兩種品牌的兒童服裝,每套A品牌服裝進(jìn)價(jià)比B品牌服裝每套進(jìn)價(jià)多25元,用2000元購(gòu)進(jìn)A種服裝數(shù)量是用750元購(gòu)進(jìn)B種服裝數(shù)量的2倍.
(1)求A、B兩種品牌服裝每套進(jìn)價(jià)分別為多少元?
(2)該服裝A品牌每套售價(jià)為130元,B品牌每套售價(jià)為95元,服裝店老板決定,購(gòu)進(jìn)B品牌服裝的數(shù)量比購(gòu)進(jìn)A品牌服裝的數(shù)量的2倍還多4套,兩種服裝全部售出后,可使總的獲利超過(guò)1200元,則最少購(gòu)進(jìn)A品牌的服裝多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某鄉(xiāng)鎮(zhèn)學(xué)校教學(xué)樓后面靠近一座山坡,坡面上是一塊平地,如圖所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,為防夏季因瀑雨引發(fā)山體滑坡,保障安全,學(xué)校決定對(duì)山坡進(jìn)行改造,經(jīng)地質(zhì)人員勘測(cè),當(dāng)坡角不超過(guò)45°時(shí),可確保山體不滑坡,改造時(shí)保持坡腳A不動(dòng),從坡頂B沿BC削進(jìn)到E處,問(wèn)BE至少是多少米?(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一時(shí)刻兩根木竿在太陽(yáng)光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ的影子有一部分落在了墻上,PM=1.2m,MN=0.8m,則木竿PQ的長(zhǎng)度為m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名同學(xué)某學(xué)期的四次數(shù)學(xué)測(cè)試成績(jī)(單位:分)如下表:

第一次

第二次

第三次

第四次

87

95

85

93

80

80

90

90

據(jù)上表計(jì)算,甲、乙兩名同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的方差分別為S2=17、S2=25,下列說(shuō)法正確的是(
A.甲同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的平均數(shù)是89分
B.甲同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的中位數(shù)是90分
C.乙同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的眾數(shù)是80分
D.乙同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)較穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)分別為A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y軸上有一點(diǎn)P(0,2).作點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P1 , 作P1關(guān)于點(diǎn)B的對(duì)稱點(diǎn)P2 , 作點(diǎn)P2關(guān)于點(diǎn)C的對(duì)稱點(diǎn)P3 , 作P3關(guān)于點(diǎn)D的對(duì)稱點(diǎn)P4 , 作點(diǎn)P4關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P5 , 作P5關(guān)于點(diǎn)B的對(duì)稱點(diǎn)P6┅,按如此操作下去,則點(diǎn)P2011的坐標(biāo)為(
A.(0,2)
B.(2,0)
C.(0,﹣2)
D.(﹣2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解學(xué)生家長(zhǎng)對(duì)孩子使用手機(jī)的態(tài)度情況,隨機(jī)抽取部分學(xué)生家長(zhǎng)進(jìn)行問(wèn)卷調(diào)查,發(fā)出問(wèn)卷140份,每位學(xué)生家長(zhǎng)1份,每份問(wèn)卷僅表明一種態(tài)度,將回收的問(wèn)卷進(jìn)行整理(假設(shè)回收的問(wèn)卷都有效),并繪制了如圖兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息解答下列問(wèn)題:
(1)回收的問(wèn)卷數(shù)為 份,“嚴(yán)加干涉”部分對(duì)應(yīng)扇形的圓心角度數(shù)為
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若將“稍加詢問(wèn)”和“從來(lái)不管”視為“管理不嚴(yán)”,已知全校共1500名學(xué)生,請(qǐng)估計(jì)該校對(duì)孩子使用手機(jī)“管理不嚴(yán)”的家長(zhǎng)大約有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案