【題目】如圖,在直角坐標系中,點A在函數(shù) 的圖象上,AB⊥ 軸于點B,AB的垂直平分線與 軸交于點C,與函數(shù) 的圖象交于點D。連結AC,CB,BD,DA,則四邊形ACBD的面積等于( )

A. 2
B.
C.4
D.

【答案】C
【解析】解:設AB與CD交于點G,A(x,y),
∵A在函數(shù)y=上,
∴xy=4;
又∵CD垂直平分AB,
∴AC=BC,AD=BD;∠CGA=∠DGA=90°
∴△ACD≌△BCD,
∴∠CAD=∠CBD,
又∵AC=BC,
∴∠CAB=∠CBA,
∴∠CAB=∠CAD,
∴△ACG≌△ADG,
∴AC=AD,
∴四邊形ACBD為菱形,
∴ S=.AB.CD=.2x.y=xy=4;
故選C.
【考點精析】解答此題的關鍵在于理解比例系數(shù)k的幾何意義的相關知識,掌握幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積,以及對線段垂直平分線的性質(zhì)的理解,了解垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn). (Ⅰ)試判斷直線BC與⊙O的位置關系,并說明理由;
(Ⅱ)若BD=2 ,BF=2,求陰影部分的面積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設二次函數(shù)y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的圖象與一次函數(shù)y2=dx+e(d≠0)的圖象交于點(x1 , 0),若函數(shù)y=y1+y2的圖象與x軸僅有一個交點,則(
A.a(x1﹣x2)=d
B.a(x2﹣x1)=d
C.a(x1﹣x22=d
D.a(x1+x22=d

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中裝有3個完全相同的小球,分別標有數(shù)字0,1,2;乙袋中裝有3個完全相同的小球,分別標有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中隨機抽取一個小球,記錄標有的數(shù)字為x,再從乙袋中隨機抽取一個小球,記錄標有數(shù)字為y,確定點M坐標為(x,y).
(1)用樹狀圖或列表法列舉點M所有可能的坐標.
(2)求點M(x,y)在函數(shù)y=﹣x2﹣1的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中有等邊△AOB,點O為坐標原點,OB=2,平行于x軸且與x軸的距離為1的線段CD分別交y軸、AB于點CD.若線段CD上點P與△AOB的某一頂點的距離為,則線段PC(PC<2.5)的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠AOB是平角,∠AOC=30°,BOD=60°,OM,ON分別是∠AOCBOD的平分線,∠MON等于________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,B,CD為矩形的四個頂點,AB=16 cm,BC=6 cm,動點P,Q分別從點A,C同時出發(fā),點P以3 cm/s的速度向點B移動,點Q以2 cm/s的速度向點D移動.當點P運動到點B停止時,點Q也隨之停止運動.問幾秒時點P和點Q的距離是10 cm?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點Am,m在第一象限,且實數(shù)m滿足條件:ABy軸于B,ACx軸于C

(1)求m的值;

(2)如圖1,BE=1,過AAFAEx軸于F,連EF,DAO上,且AD=AE,連接ED并延長交x軸于點P,求點P的坐標;

(3)如圖2,G為線段OC延長線上一點,AC=CG,E為線段OB上一動點(不與OB重合),F為線段CE的中點,若BFFKAGK,延長BF、AC交于M,連接KM請問FBK的大小是否變化?若不變,請求其值;若改變,求出變化的范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學小組的10位同學站成一列做報數(shù)游戲,規(guī)則是:從前面第一位同學開始,每位同學依次報自己順序數(shù)的倒數(shù)的2倍加1,第1位同學報( +1),第2位同學報( +1),第3位同學報( +1)…這樣得到的n個數(shù)的積為

查看答案和解析>>

同步練習冊答案