如下圖,D是等腰Rt△ABC內(nèi)一點(diǎn),BC是斜邊,如果將△ABD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)到的位置,則的度數(shù)為________°.

答案:45
解析:

由已知可得,,又∠CAB=90°,所以,故得到


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰Rt△ABC與等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB邊上,取AE的中點(diǎn)F,CD的中點(diǎn)G,連接GF.
(1)FG與DC的位置關(guān)系是
 
,F(xiàn)G與DC的數(shù)量關(guān)系是
 
;
(2)若將△BDE繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)180°,其它條件不變,請(qǐng)完成下圖,并判斷(1)中的結(jié)論是否仍然成立?請(qǐng)證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:AC⊥AB,BD⊥AB,且AC=BE,AE=BD,求證:△CDE是等腰直角三角形.
證明:∵AC⊥AB,BD⊥AB∴∠CAE=∠DBE=90°
∵AC=BE,AE=BD∴△ACE≌△BED
∴CE=DE且∠ACE=∠BED
∵∠ACE+∠AEC=90°∴∠AEC+∠BED=90°
∴∠CED=90°∴△CED為等腰直角三角形
利用上題的解題思路解答下列問題:
在Rt△ABC中,∠C=90°,D,E分別為CB,CA延長線上的點(diǎn),BE與AD的交點(diǎn)為P.
(1)若BD=AC,AE=CD,在下圖中畫出符合題意的圖形,求出∠APE的度數(shù);
(2)若AC=
3
BD,CD=
3
AE,則∠APE=
 
°.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年山東省樂陵市丁武中學(xué)八年級(jí)下學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在等腰Rt△ABC與等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB邊上,取AE的中點(diǎn)F,CD的中點(diǎn)G,連結(jié)GF.

(1)FG與DC的位置關(guān)系是         ,F(xiàn)G與DC的數(shù)量關(guān)系是        
(2)若將△BDE繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)180°,其它條件不變,請(qǐng)完成下圖,并判斷(1)中的結(jié)論是否仍然成立? 請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆山東省樂陵市八年級(jí)下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在等腰Rt△ABC與等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB邊上,取AE的中點(diǎn)F,CD的中點(diǎn)G,連結(jié)GF.

(1)FG與DC的位置關(guān)系是         ,F(xiàn)G與DC的數(shù)量關(guān)系是        ;

(2)若將△BDE繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)180°,其它條件不變,請(qǐng)完成下圖,并判斷(1)中的結(jié)論是否仍然成立? 請(qǐng)證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案