【題目】如圖,小章利用一張左、右兩邊已經(jīng)破損的長方形紙片ABCD做折紙游戲,他將紙片沿EF折疊后,D、C兩點(diǎn)分別落在D′、C′的位置,并利用量角器量得∠EFB=66°,則∠AED′等于度.
【答案】48
【解析】解:∵∠EFB=66°,
∴∠EFC=180°﹣66°=114°,
∵四邊形ABCD是長方形,
∴AD∥BC,
∴∠DEF=180°﹣∠EFC=180°﹣114°=66°,
∵沿EF折疊D和D′重合,
∴∠D′EF=∠DEF=66°,
∴∠AED′=180°﹣66°﹣66°=48°,
所以答案是:48.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行線的性質(zhì)(兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ)),還要掌握翻折變換(折疊問題)(折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△BCE中,點(diǎn)A是邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點(diǎn)P(x,y),我們把點(diǎn)P′(﹣y+1,x+1)叫作點(diǎn)P的伴隨點(diǎn).已知點(diǎn)A1的伴隨點(diǎn)為A2 , 點(diǎn)A2的伴隨點(diǎn)為A3 , 點(diǎn)A3的伴隨點(diǎn)為A4 , 這樣依次得到點(diǎn)A1 , A2 , A3 , A4…,若點(diǎn)A1的坐標(biāo)為(a,b),對于任意的正整數(shù)n,點(diǎn)An均在x軸上方,則a,b應(yīng)滿足的條件為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面每組數(shù)分別是三根小木棒的長度,它們能擺成三角形的是( )
A. 12cm,3cm,6cm B. 8cm,16cm,8cm C. 6cm,6cm,13cm D. 2cm,3cm,4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b(k≠0)圖象過點(diǎn)(0,2),且與兩坐標(biāo)軸圍成的三角形面積為2,則一次函數(shù)的解析式為( )
A.y=x+2
B.y=﹣x+2
C.y=x+2或y=﹣x+2
D.y=﹣x+2或y=x﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出△ABC各點(diǎn)的坐標(biāo).
(2)求出△ABC的面積.
(3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得到△A′B′C′,請?jiān)趫D中畫出△A′B′C′,并寫出點(diǎn)A′、B′、C′的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com