【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC、AC分別交于D、E兩點,過點D作DF⊥AC,垂足為點F.
(1)求證:DF是⊙O的切線;
(2)若AE=4,cosA= ,求DF的長.

【答案】
(1)證明:如圖,連接OD,作OG⊥AC于點G,

∵OB=OD,

∴∠ODB=∠B,

又∵AB=AC,

∴∠C=∠B,

∴∠ODB=∠C,

∵DF⊥AC,

∴∠DFC=90°,

∴∠ODF=∠DFC=90°,

∴DF是⊙O的切線.


(2)解:AG= AE=2,

∵cosA= ,

∴OA= = =5,

∴OG= = ,

∵∠ODF=∠DFG=∠OGF=90°,

∴四邊形OGFD為矩形,

∴DF=OG=


【解析】(1)證明:如圖,連接OD,作OG⊥AC于點G,推出∠ODB=∠C;然后根據(jù)DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF是⊙O的切線.(2)首先判斷出:AG= AE=2,然后判斷出四邊形OGFD為矩形,即可求出DF的值是多少.
【考點精析】解答此題的關(guān)鍵在于理解等腰三角形的性質(zhì)的相關(guān)知識,掌握等腰三角形的兩個底角相等(簡稱:等邊對等角),以及對解直角三角形的理解,了解解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,D是BC邊上的點(不與點B、C重合),連結(jié)AD.
(1)如圖1,當(dāng)點D是BC邊上的中點時,SABD:SACD=;
(2)如圖2,當(dāng)AD是∠BAC的平分線時,若AB=m,AC=n,求SABD:SACD的值(用含m,n的代數(shù)式表示)
(3)如圖3,AD平分∠BAC,延長AD到E,使得AD=DE,連接BE,如果AC=2,AB=4,SBDE=6,那么SABC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一動點從半徑為2的⊙O上的A0點出發(fā),沿著射線A0O方向運動到⊙O上的點A1處,再向左沿著與射線A1O夾角為60°的方向運動到⊙O上的點A2處;接著又從A2點出發(fā),沿著射線A2O方向運動到⊙O上的點A3處,再向左沿著與射線A3O夾角為60°的方向運動到⊙O上的點A4處;…按此規(guī)律運動到點A2017處,則點A2017與點A0間的距離是( )

A.4
B.2
C.2
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=ax+b與雙曲線y2= 交于A、B兩點,與x軸交于點C,點A的縱坐標(biāo)為6,點B的坐標(biāo)為(﹣3,﹣2).
(1)求直線和雙曲線的解析式;
(2)求點C的坐標(biāo),并結(jié)合圖象直接寫出y1<0時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM、ON上滑動,下列結(jié)論:
①若C、O兩點關(guān)于AB對稱,則OA=2 ;
②C、O兩點距離的最大值為4;
③若AB平分CO,則AB⊥CO;
④斜邊AB的中點D運動路徑的長為
其中正確的是(把你認(rèn)為正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周日,小濤從家沿著一條筆直的公路步行去報亭看報,看了一段時間后,他按原路返回家中,小濤離家的距離y(單位:m)與他所用的時間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列說法中正確的是(
A.小濤家離報亭的距離是900m
B.小濤從家去報亭的平均速度是60m/min
C.小濤從報亭返回家中的平均速度是80m/min
D.小濤在報亭看報用了15min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB是⊙O的弦,點C是 的中點,連接OB、OC,OC交AB于點D.
(1)如圖1,求證:AD=BD;
(2)如圖2,過點B作⊙O的切線交OC的延長線于點M,點P是 上一點,連接AP、BP,求證:∠APB﹣∠OMB=90°;
(3)如圖3,在(2)的條件下,連接DP、MP,延長MP交⊙O于點Q,若MQ=6DP,sin∠ABO= ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某生物科技發(fā)展公司投資2000萬元,研制出一種綠色保健食品.已知該產(chǎn)品的成本為40元/件,試銷時,售價不低于成本價,又不高于180元/件.經(jīng)市場調(diào)查知,年銷售量y(萬件)與銷售單價x(元/件)的關(guān)系滿足下表所示的規(guī)律.

銷售單價x(元/件)

60

65

70

80

85

年銷售量y(萬件)

140

135

130

120

115


(1)y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍。
(2)經(jīng)測算:年銷售量不低于90萬件時,每件產(chǎn)品成本降低2元,設(shè)銷售該產(chǎn)品年獲利潤為W(萬元)(W=年銷售額﹣成本﹣投資),求出年銷售量低于90萬件和不低于90萬件時,W與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)銷售單位定為多少時,公司銷售這種產(chǎn)品年獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時,測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號).

查看答案和解析>>

同步練習(xí)冊答案