【題目】在△ABC中,AB>BC,直線l垂直平分AC.
(1)如圖1,作∠ABC的平分線交直線l于點(diǎn)D,連接AD,CD.
①補(bǔ)全圖形;
②判斷∠BAD和∠BCD的數(shù)量關(guān)系,并證明.
(2)如圖2,直線l與△ABC的外角∠ABE的平分線交于點(diǎn)D,連接AD,CD.求證:∠BAD=∠BCD.
【答案】(1)①見解析;②∠BAD+∠BCD=180°,證明見解析;(2)見解析.
【解析】
(1)①根據(jù)題意畫圖即可補(bǔ)全圖形;
②過點(diǎn)D作DE⊥AB于點(diǎn)E、DF⊥BC交BC的延長(zhǎng)線于點(diǎn)F,如圖4,根據(jù)角平分線的性質(zhì)和線段垂直平分線的性質(zhì)可得DE=DF,DA=DC,再根據(jù)HL可證Rt△ADE≌Rt△CDF,進(jìn)而可得∠BAD=∠DCF,進(jìn)一步即可得出∠BAD和∠BCD的數(shù)量關(guān)系;
(2)過點(diǎn)D作DH⊥AB于點(diǎn)H,DG⊥CE于點(diǎn)G,如圖5,根據(jù)角平分線的性質(zhì)和線段垂直平分線的性質(zhì)可得DG=DH,DA=DC,再根據(jù)HL可證Rt△ADH≌Rt△CDG,進(jìn)一步即可得出結(jié)論.
解:(1)①補(bǔ)全圖形如圖3;
②∠BAD+∠BCD=180°.
證明:過點(diǎn)D作DE⊥AB于點(diǎn)E、DF⊥BC交BC的延長(zhǎng)線于點(diǎn)F,如圖4,
∵BD平分∠ABC,∴DE=DF,
∵直線l垂直平分AC,∴DA=DC,
∴Rt△ADE≌Rt△CDF(HL),∴∠BAD=∠DCF,
∵∠DCF+∠BCD=180°,
∴∠BAD+∠BCD=180°;
(3)證明:過點(diǎn)D作DH⊥AB于點(diǎn)H,DG⊥CE于點(diǎn)G,如圖5,
∵BD平分∠ABE,∴DH=DG,
∵直線l垂直平分AC,∴DA=DC,
∴Rt△ADH≌Rt△CDG(HL),
∴∠BAD=∠BCD,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中有一格點(diǎn)三角形,該三角形的三個(gè)頂點(diǎn)為:A(1,1),B(﹣3,1),C(﹣3,﹣1).
(1)若△ABC的外接圓的圓心為P,則點(diǎn)P的坐標(biāo)為_____,⊙P的半徑為_____;
(2)如圖所示,在11×8的網(wǎng)格圖內(nèi),以坐標(biāo)原點(diǎn)O點(diǎn)為位似中心,將△ABC按相似比2:1放大,A、B、C的對(duì)應(yīng)點(diǎn)分別為A'、B'、C'.①畫出△A'B'C';②將△A'B'C'沿x軸方向平移,需平移_____個(gè)單位長(zhǎng)度,能使得B'C'所在的直線與⊙P相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為兩正方形ABCD、CEFG和矩形DFHI的位置圖,其中D,A兩點(diǎn)分別在CG、BI上,若AB=3,CE=5,則矩形DFHI的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)
如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是,點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn).當(dāng)點(diǎn)在軸上移動(dòng)時(shí),始終保持是等腰直角三角形,且(點(diǎn)、、按逆時(shí)針方向排列);當(dāng)點(diǎn)移動(dòng)到點(diǎn)時(shí),得到等腰直角三角形(此時(shí)點(diǎn)與點(diǎn)重合).
(初步探究)
(1)寫出點(diǎn)的坐標(biāo)______.
(2)點(diǎn)在軸上移動(dòng)過程中,當(dāng)?shù)妊苯侨切?/span>的頂點(diǎn)在第四象限時(shí),連接.
求證:;
(深入探究)
(3)當(dāng)點(diǎn)在軸上移動(dòng)時(shí),點(diǎn)也隨之運(yùn)動(dòng).經(jīng)過探究發(fā)現(xiàn),點(diǎn)的橫坐標(biāo)總保持不變,請(qǐng)直接寫出點(diǎn)的橫坐標(biāo):______.
(拓展延伸)
(4)點(diǎn)在軸上移動(dòng)過程中,當(dāng)為等腰三角形時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(k﹣1)x2﹣2kx+k+2=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若x1,x2是一元二次方程的兩個(gè)實(shí)數(shù)根,且滿足=﹣2,求k的值,并求此時(shí)方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD平分∠BAC交BC于D,∠MDN的兩邊分別與AB,AC相交于M,N兩點(diǎn),且DM=DN.
(1)如圖甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.
①寫出∠MDA= °,AB的長(zhǎng)是 .
②求四邊形AMDN的周長(zhǎng);
(2)如圖乙,過D作DF⊥AC于F,先補(bǔ)全圖乙再證明AM+AN=2AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC 中,點(diǎn) D 是線段 BC 上一點(diǎn).作射線 AD ,點(diǎn) B 關(guān)于射線 AD 的對(duì)稱點(diǎn)為 E .連接 EC 并延長(zhǎng),交射線 AD 于點(diǎn) F .
(1)補(bǔ)全圖形;(2)求∠AFE 的度數(shù);(3)用等式表示線段 AF 、CF 、 EF 之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn),,我們把叫,兩點(diǎn)間的“平面距離”,記作.
()已知為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)是坐標(biāo)軸上的點(diǎn),滿足,請(qǐng)寫出點(diǎn)的坐標(biāo).答:__________.
()設(shè)是平面上一點(diǎn),是直線上的動(dòng)點(diǎn),我們定義的最小值叫做到直線的“平面距離”.試求點(diǎn)到直線的“平面距離”.
()在上面的定義基礎(chǔ)上,我們可以定義平面上一條直線與⊙的“直角距離”:在直線與⊙上各自任取一點(diǎn),此兩點(diǎn)之間的“平面距離”的最小值稱為直線與⊙的“平面距離”,記作.
試求直線與圓心在直線坐標(biāo)系原點(diǎn)、半徑是的⊙的直角距離__________.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位運(yùn)動(dòng)員在相同條件下各射靶次,每次射靶的成績(jī)?nèi)缦拢?/span>
甲:,,,,,,,,,
乙:,,,,,,,,,
丙:,,,,,,,,,
(1)根據(jù)以上數(shù)據(jù)完成下表:
平均數(shù) | 中位數(shù) | 方差 | |
甲 | __________ | ||
乙 | __________ | ||
丙 | __________ |
(2)根據(jù)表中數(shù)據(jù)分析,哪位運(yùn)動(dòng)員的成績(jī)最穩(wěn)定.并簡(jiǎn)要說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com