【題目】已知二次函數(shù)的解析式是.
(1)用配方法將化成的形式,并寫出該二次函數(shù)的對稱軸和頂點坐標(biāo);
(2)二次函數(shù)的圖象與x軸相交嗎?說明理由;若相交,求出交點坐標(biāo).
【答案】(1)對稱軸為直線x=3,頂點坐標(biāo)為(3,-2);(2)相交;交點為(1,0),(5,0).
【解析】
(1)根據(jù)配方法可以將該函數(shù)解析式化為y=a(x-h)2+k的形式,從而可以得到該函數(shù)圖象的對稱軸和頂點坐標(biāo);
(2)計算的值即可判斷圖象是否與x軸相交;令y=0求出相應(yīng)的x的值,即可求得該函數(shù)圖象與x軸的交點坐標(biāo).
解:(1)
,
即
該二次函數(shù)對稱軸為直線,頂點坐標(biāo)為(3,-2);
(2)相交,理由如下:
令,則,
∵,
∴該二次函數(shù)圖象與x軸相交,且有兩個交點;
解得,,
∴與x軸的交點為(1,0),(5,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=BC=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF.
(1)若∠ADC=80°,求∠ECF;
(2)求證:∠ECF=∠CEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富校園文化,某學(xué)校決定舉行學(xué)生趣味運動會,將比賽項目確定為袋鼠跳、夾球跑、跳大繩、綁腿跑和拔河賽五種.為了解學(xué)生對這五項運動的喜歡情況,隨機(jī)調(diào)查了該校a名學(xué)生最喜歡的一種項目(每名學(xué)生必選且只能選擇五項中的一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表:
學(xué)生最喜歡的活動項目的人數(shù)統(tǒng)計表 | ||
項目 | 學(xué)生數(shù)(名) | 百分比(%) |
袋鼠跳 | 45 | 15 |
夾球跑 | 30 | c |
跳大繩 | 75 | 25 |
綁腿跑 | b | m |
拔河賽 | 90 | 30 |
根據(jù)圖表中提供的信息,解答下列問題:
(1)a= ,b= ,c= ;
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)根據(jù)調(diào)查結(jié)果,請你估計該校3000名學(xué)生中有多少名學(xué)生最喜歡綁腿跑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1 ,在中,是邊上一點(不與點重合),將線段繞點逆時針旋轉(zhuǎn)得到,連接.
(發(fā)現(xiàn)問題)
(1)如圖1 ,通過圖形旋轉(zhuǎn)的性質(zhì),可知_______, 度;
(解決問題)
(2)如圖1,證明;
(拓展延伸)
如圖2,在中,為外一點,且,仍將線段繞點逆時針旋轉(zhuǎn)得到,連接.
(3)若求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,AB為直徑,點P在AB的延長線上,PC與⊙O相切于點C,點D為弧AC上的點,且2∠DAB﹣∠P=90°,連接AD.
(1)如圖1,求證:弧AD=弧BC;
(2)如圖2,PC=6,PB=,求∠ADC度數(shù);
(3)如圖3,在(2)的條件下,F為AB下方⊙O上一點.∠ACF=60°,L為OF中點,LK⊥AL于L,交CF于點K.連接AK,求AK的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲經(jīng)銷商庫存有1200套A品牌服裝,每套進(jìn)價400元,售價500元,一年內(nèi)可賣完.現(xiàn)市場流行B品牌服裝,每套進(jìn)價300元,售價600元,但一年內(nèi)只允許經(jīng)銷商一次性訂購B品牌服裝,一年內(nèi)B品牌服裝銷售無積壓,因甲經(jīng)銷商無流動資金可用,只有低價轉(zhuǎn)讓A品牌服裝,轉(zhuǎn)讓來的資金全部用于購進(jìn)B品牌服裝,并銷售。經(jīng)與乙經(jīng)銷商協(xié)商,甲、乙雙方達(dá)成轉(zhuǎn)讓協(xié)議,轉(zhuǎn)讓價格y(元/套)與轉(zhuǎn)讓數(shù)量x(套)之間的函數(shù)關(guān)系式為(),若甲經(jīng)銷商轉(zhuǎn)讓x套A品牌服裝,一年內(nèi)所獲總利潤為W(元).
(1)求轉(zhuǎn)讓后剩余的A品牌服裝的銷售款(元)與x(套)之間的函數(shù)關(guān)系式;
(2)求B品牌服裝的銷售款(元)與x(套)之間的函數(shù)關(guān)系式;
(3)求W(元)與x(套)之間的函數(shù)關(guān)系式,當(dāng)轉(zhuǎn)讓多少套時,所獲總利潤W最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點(點M不與點B,C重合),過點C作CN⊥DM交AB于點N,連結(jié)OM、ON,MN.下列五個結(jié)論:①△CNB≌△DMC;②ON=OM;③ON⊥OM;④若AB=2,則S△OMN的最小值是1;⑤AN2+CM2=MN2.其中正確結(jié)論是_____;(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?
(3)實際進(jìn)貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進(jìn)A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺電腦銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com