【題目】(1)如圖,在直線MN上求作一點(diǎn)P,使點(diǎn)P到射線OA和OB的距離相等.(要求用尺規(guī)作圖,保留作圖痕跡,不必寫作法和證明過程)
(2)等腰三角形的兩邊長滿足|a-4|+(b-9)2=0.求這個(gè)等腰三角形的周長.
【答案】(1)見解析;(2)22.
【解析】
(1)先作∠AOB的平分線,與直線MN交于點(diǎn)P,點(diǎn)P即為所求作的點(diǎn).
(2)因?yàn)?/span>|a-4|+(b-9)2=0,所以|a-4|=0,(b-9)2=0,即可求得等腰三角形的兩邊長即可求解.
(1)如圖,點(diǎn)P為所作.
(2)|a-4|+(b-9)2=0.
因?yàn)榻^對值和平方都是大于等于0的數(shù),和為0,則:
a-4=0,a=4;
b-9=0,b=9,
所以等腰三角形:4,4,9, 因?yàn)?/span>4+4<9,所以舍去.
即等腰三角形:9,9,4
周長=9+9+4=18+4=22.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的表達(dá)式為y=x2-2x-6,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的“弦”CD的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后得到△EDC,此時(shí)點(diǎn)D落在AB邊上,斜邊DE交AC于點(diǎn)F,則n的大小和圖中陰影部分的面積分別為( )
A. 30,2 B. 60,2 C. 60, D. 60,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點(diǎn)在直線上(,除外),的垂線與的垂線交于點(diǎn),研究和的數(shù)量關(guān)系.
(1)在探究,的關(guān)系時(shí),運(yùn)用“從特殊到一般”的數(shù)學(xué)思想,發(fā)現(xiàn)當(dāng)點(diǎn)是的中點(diǎn)時(shí),只需要取邊的中點(diǎn)(如圖),通過推理證明就可以得到的數(shù)量關(guān)系,請你按照這種思路直接寫出和的數(shù)量關(guān)系:_____________________
(2)當(dāng)點(diǎn)是線段上(,除外)任意一點(diǎn)(其它條件不變),上面得到的結(jié)論是否仍然成立呢?證明你的結(jié)論;
(3)點(diǎn)在線段的延長線上,上面得到的結(jié)論是否仍然成立呢?在下圖中畫出圖形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠E=90°,那么∠B+∠D等于多少度?為什么?
解:過點(diǎn)E作EF∥AB,
得∠B+∠BEF=180°(________________________),
因?yàn)?/span>AB∥CD(已知),
EF∥AB(所作),
所以EF//CD(________________________).
得________________________(兩直線平行,同旁內(nèi)角互補(bǔ)),
所以∠B+∠BEF+∠DEF+∠D=________°(__________).
即∠B+∠BED+∠D=___________°.
因?yàn)椤?/span>BED=90°(已知),
所以∠B+∠D=___________°(等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+6與拋物線y=ax2+bx+c相交于A,B兩點(diǎn),且點(diǎn)A(1,4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上.
(1)求拋物線的解析式;
(2)在(1)中拋物線的第三象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市A,B兩鎮(zhèn)相距42千米,分別從A,B處測得某風(fēng)景區(qū)中心C處的方位角如圖所示,風(fēng)景區(qū)區(qū)域是以C為圓心,15千米為半徑的圓,tanα=1.673,tanβ=1.327.為了開發(fā)旅游,有關(guān)部門要設(shè)計(jì)修建連接A,B兩市的縣級公路.問連接A,B的兩鎮(zhèn)的縣級公路是否穿過風(fēng)景區(qū),請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程 有實(shí)數(shù)根.
(1)求的取值范圍;
(2)若 兩個(gè)實(shí)數(shù)根分別為 ,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳佳某天上午9時(shí)騎自行車離開家,17時(shí)回家,他有意描繪了離家的距離與時(shí)同的變化情況,如圖所示.
(1)圖象表示了哪兩個(gè)變量的關(guān)系?
(2)10時(shí)和11時(shí),他分別離家多遠(yuǎn)?
(3)他最初到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?
(4)11時(shí)到13時(shí)他行駛了多少千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com