已知P1(a-1,5)和P2(2,b-1)關(guān)于x軸對(duì)稱,則(a+b)2011的值為     

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、在平面直角坐標(biāo)系中,已知P1的坐標(biāo)為(1,0),將其繞著原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)30°得到點(diǎn)P2,延長(zhǎng)OP2到點(diǎn)P3,使OP3=2OP2,再將點(diǎn)P3繞著原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)30°得到P4,延長(zhǎng)OP4到點(diǎn)P5,使OP5=2OP4,如此繼續(xù)下去,則點(diǎn)P2010的坐標(biāo)是
(0,-21004

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都一模)已知P1(-2,y1),P2(-1,y2),P3(2,y3)是反比例函數(shù)y=
2
x
的圖象上的三點(diǎn),則y1,y2,y3的大小關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABO的頂點(diǎn)A,B,O的坐標(biāo)分別為(1,0)(0,1),(0,0),點(diǎn)列P1,P2,P3,P4,…中的相鄰兩點(diǎn)都關(guān)于△ABO的一個(gè)頂點(diǎn)對(duì)稱.點(diǎn)P1與點(diǎn)P2關(guān)于點(diǎn)A對(duì)稱,點(diǎn)P2與P3點(diǎn)關(guān)于點(diǎn)B對(duì)稱,點(diǎn)P3與點(diǎn)P4關(guān)于點(diǎn)O對(duì)稱,點(diǎn)P4與點(diǎn)P5關(guān)于點(diǎn)A對(duì)稱,點(diǎn)P5與點(diǎn)P6關(guān)于點(diǎn)B對(duì)稱,點(diǎn)P6與點(diǎn)P7關(guān)于點(diǎn)O對(duì)稱…對(duì)稱中心分別是A,B,O,A,B,O,…,且這對(duì)稱中心依次循環(huán).已知P1的坐標(biāo)是(1,1),試寫出點(diǎn)P2,P7,P100的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知P1(a-1,5)和P2(2,b-1)關(guān)于x軸對(duì)稱,求a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知兩點(diǎn)坐標(biāo)P1(x1,y1)P2(x2,y2)我們就可以使用兩點(diǎn)間距離公式P1P2=
(x1-x2)2+(y1-y 2)2
來求出點(diǎn)P1與點(diǎn)P2間的距離.如:已知P1(-1,2),P2(0,3),則P1P2=
(-1-0)2+(2-3)2
=
2

通過閱讀材以上材料,請(qǐng)回答下列問題:
(1)已知點(diǎn)P1坐標(biāo)為(-1,3),點(diǎn)P2坐標(biāo)為(2,1)
①求P1P2=
13
13

②若點(diǎn)Q在x軸上,則△QP1P2的周長(zhǎng)最小值為
6+
13
6+
13

(2)如圖,在平面直角坐標(biāo)系中,四邊形OABC為長(zhǎng)方形,點(diǎn)A、B的坐標(biāo)分別為
(4,0)(4,3),動(dòng)點(diǎn)M、N分別從點(diǎn)O,點(diǎn)B同時(shí)出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng),其中M點(diǎn)沿OA向終點(diǎn)A運(yùn)動(dòng),N點(diǎn)沿BC向終點(diǎn)C運(yùn)動(dòng),過點(diǎn)N作NF⊥BC交AC于F,交AO于G,連結(jié)MF.
當(dāng)兩點(diǎn)運(yùn)動(dòng)了t秒時(shí):
①直接寫出直線AC的解析式:
y=-
3
4
x+3
y=-
3
4
x+3
;
②F點(diǎn)的坐標(biāo)為(
4-t
4-t
3
4
t
3
4
t
);(用含t的代數(shù)式表示)
③記△MFA的面積為S,求S與t的函數(shù)關(guān)系式;(0<t<4);
④當(dāng)點(diǎn)N運(yùn)動(dòng)到終點(diǎn)C點(diǎn)時(shí),在y軸上是否存在點(diǎn)E,使△EAN為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案