如圖,已知反比例函數(shù)y=
k1
x
(k1>0)和y=
k2
x
(k2<0),點(diǎn)A在y軸的正半軸上,過點(diǎn)A作直線BC∥x軸,且分別與兩個(gè)反比例函數(shù)的圖象交于點(diǎn)B和C,連接OC、OB.若△BOC的面積為
5
2
,AC:AB=2:3,則k1•k2=
-6
-6
分析:根據(jù)反比例函數(shù)y=
k
x
(k≠0)系數(shù)k的幾何意義得到S△ABO=-
1
2
k1,S△ACO=
1
2
k2,而△BOC的面積為
5
2
,AC:AB=2:3,根據(jù)三角形面積公式得到S△ABO=
3
5
S△BOC=
3
2
,S△ACO=
2
5
S△BOC=1,即有-
1
2
k1=
3
2
,
1
2
k2=1,然后計(jì)算出k1,k2,最后計(jì)算它們的乘積.
解答:解:∵BC∥x軸,
∴S△ABO=
1
2
|k1|=-
1
2
k1,S△ACO=
1
2
|k2|=
1
2
k2,
∵△BOC的面積為
5
2
,AC:AB=2:3,
∴S△ABO=
3
5
S△BOC=
3
5
×
5
2
=
3
2
,S△ACO=
2
5
S△BOC=
2
5
×
5
2
=1,
∴-
1
2
k1=
3
2
1
2
k2=1,
∴k1=-3,k2=2,
∴k1•k2=-3×2=-6.
故答案為-6.
點(diǎn)評(píng):本題考查了反比例函數(shù)y=
k
x
(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=kx(k≠0)圖象上任意一點(diǎn)向x軸和y軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為|k|.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
m
x
圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過A(-1,4)和B(a,
4
5
)兩點(diǎn),
(1)求B點(diǎn)的坐標(biāo)及兩個(gè)函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)C,求C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過點(diǎn)A(2,m),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△MON的面積;
(3)請(qǐng)判斷點(diǎn)P(4,1)是否在這個(gè)反比例函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A和點(diǎn)D,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)D的縱坐標(biāo)為-1.過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點(diǎn)M,求AM的長(zhǎng);
(3)在雙曲線上是否存在點(diǎn)P,使得△MBP的面積為8?若存在請(qǐng)求P點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案