【題目】如圖,已知反比例函數(shù)與一次函數(shù)的圖象在第一象限相交于點.
(1)試確定這兩個函數(shù)的表達(dá)式;
(2)求出這兩個函數(shù)圖象的另一個交點的坐標(biāo),并根據(jù)圖像寫出使反比例函數(shù)的值大于一次函數(shù)的值的取值范圍.
【答案】(1),;(2)x<-2,或0<x<1
【解析】
(1)把A(1,-k+4)代入解析式,即可求出k的值;把求出的A點坐標(biāo)代入一次函數(shù)的解析式,即可求出b的值;從而求出這兩個函數(shù)的表達(dá)式;
(2)將兩個函數(shù)的解析式組成方程,其解即為另一點的坐標(biāo).當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時,直線在雙曲線的下方,直接根據(jù)圖象寫出一次函數(shù)的值小于反比例函數(shù)的值x的取值范圍.
解:(1)由題意,得,
∴k=2,
∴A(1,2),2=b+1
∴b=1,
反比例函數(shù)表達(dá)式為:,
一次函數(shù)表達(dá)式為:.
(2)又由題意,得,
,
解得
∴B(-2,-1),
∴當(dāng)x<-2,或0<x<1時,反比例函數(shù)大于一次函數(shù)的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=44°,點D點E分別從點B、點C同時出發(fā),在線段BC上作等速運(yùn)動,到達(dá)C點、B點后運(yùn)動停止.
(1)求證:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度數(shù);
(3)若△ACE的外心在其內(nèi)部時,求∠BDA的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側(cè),拋物線的對稱軸x=1,與y軸交于C(0,﹣3)點,點P是直線BC下方的拋物線上一動點.
(1)求這個二次函數(shù)的解析式及A、B點的坐標(biāo).
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形;若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點P運(yùn)動到什么位置時,四邊形ABPC的面積最大;求出此時P點的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價高于進(jìn)價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1、-2、-3、4,它們除了標(biāo)有的數(shù)字不同之外再也沒有其它區(qū)別,小芳從盒子中隨機(jī)抽取一張卡片.
(1)求小芳抽到負(fù)數(shù)的概率;
(2)若小明再從剩余的三張卡片中隨機(jī)抽取一張,請你用樹狀圖或列表法,求小明和小芳兩人均抽到負(fù)數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為營造“安全出行”的良好交通氛圍,實時監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°。
(1)求∠MCD的度數(shù);
(2)求攝像頭下端點F到地面AB的距離。(精確到百分位)
(參考數(shù)據(jù);sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠B=30°,AC=,D、E分別在邊AC、BC上,CD=1,DE∥AB,將△CDE繞點C旋轉(zhuǎn),旋轉(zhuǎn)后點D、E對應(yīng)的點分別為D′、E′,當(dāng)點E′落在線段AD′上時,連接BE′,此時BE′的長為( 。
A.2B.3C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于A(﹣3,0),B(4,0)兩點,與y軸交于點C,連接AC,BC.
(1)求此拋物線的表達(dá)式;
(2)求過B、C兩點的直線的函數(shù)表達(dá)式;
(3)點P是第一象限內(nèi)拋物線上的一個動點.過點P作PM⊥x軸,垂足為點M,PM交BC于點Q.試探究點P在運(yùn)動過程中,是否存在這樣的點Q,使得以A,C,Q為頂點的三角形是等腰三角形.若存在,請求出此時點P的坐標(biāo),若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,以AB為直徑的⊙O交BC于點F,連結(jié)OC,過點B作BD∥OC交⊙O點D.連接AD交OC于點E
(1)求證:BD=AE.
(2)若OE=1,求DF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com