【題目】已知:在平面直角坐標系中,點為坐標原點,直線分別交軸,軸于點,,點在第一象限,連接,四邊形是正方形.

1)如圖1,求直線的解析式;

2)如圖2,點分別在上,點關(guān)于軸的對稱點為點,點上,且,連接,設(shè)點的橫坐標為的面積為,求之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

3)如圖3,在(2)的條件下,連接,,,點上,且,點上,連接于點,且,若,求的值.

【答案】(1);(2);(332

【解析】

1)先求C的坐標,再代入解析式可求出k;

2)根據(jù)點E關(guān)于y軸的對稱點為點FEG=2FG可以得出OGOE的關(guān)系,從而得出GEt的關(guān)系,再根據(jù)三角形面積公式即可算出S;

3)令,則,在中,根據(jù)勾股定理求出n,延長軸于點,連接,過點軸于點,令,則,從而證出,在中,根據(jù)勾股定理求出m,從而求出S.

解:(1)當時,,

,

,

∵四邊形是正方形,

,

代入解析式得,

解得,

;

2)如圖,過點軸于點

,

∴四邊形是矩形,

,

∵點與點關(guān)于軸對稱,

,

,

,

,

,

3)如圖,令,則,

中,

,

解得,(舍),

,

延長軸于點,連接,過點軸于點,

,則,

,

,

,

,

,,

,

,

,

,

的交點為點,

,

,

又∵,

,

,

中,,

,

解得(舍),

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并按要求解答.

(模型介紹)

如圖①,C是線段A、B上一點E、FAB同側(cè),且∠A=B=ECF=90°,看上去像一個“K“,我們稱圖①為“K”型圖.

(性質(zhì)探究)

性質(zhì)1:如圖①,若EC=FC,ACE≌△BFC

性質(zhì)2:如圖①,若EC≠FC,ACE~BFC且相似比不為1.

(模型應(yīng)用)

應(yīng)用1:如圖②,在四邊形ABCD中,∠ADC=90°,AD=1,CD=2,BC=2,AB=5.求BD.

應(yīng)用2:如圖③,已知△ABC,分別以AB、AC為邊向外作正方形ABGF、正方形ACDE,AHBC,連接EF.交AH的反向延長線于點K,證明:KEF中點.

(1)請你完成性質(zhì)1的證明過程;

(2)請分別解答應(yīng)用1,應(yīng)用2提出的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點C在半圓上,過點C的切線交BA的延長線于點D,CD=CB,CEAB交半圓于點E.

(1)求∠D的度數(shù);

(2)求證:以點C,O,B,E為頂點的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b的圖象經(jīng)過A0,﹣2),B1,0)兩點,與反比例函數(shù)的圖象在第一象限內(nèi)的交點為M,若△OBM的面積為2

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)在x軸上是否存在點P,使AM⊥MP?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地.兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示.其中說法正確的是(

A.甲的速度是60/分鐘B.乙的速度是80/分鐘

C.的坐標為D.線段所表示的函數(shù)表達式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】生活經(jīng)驗表明,靠墻擺放梯子時,若梯子底端離墻的距離約為梯子長度的,則梯子比較穩(wěn)定,如圖,AB為一長度為6米的梯子.

(1)當梯子穩(wěn)定擺放時,它的頂端能達到5.7米高的墻頭嗎?

(2)如圖2,若梯子底端向左滑動(3﹣2)米,那么梯子頂端將下滑多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,則的長為(

A.6B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明坐于堤邊垂釣,如圖①,河堤AC的坡角為30°,AC米,釣竿AO的傾斜角是60°,其長為3米,若AO與釣魚線OB的夾角為60°,求浮漂B與河堤下端C之間的距離(如圖②).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,連接ADBD.則下列結(jié)論:

①AC=AD;②BD⊥AC四邊形ACED是菱形.

其中正確的個數(shù)是( )

A0 B1 C2 D3

查看答案和解析>>

同步練習冊答案