【題目】(6分)如圖:在平面直角坐標系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度;已知△ABC.

(1)作出△ABC以O(shè)為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°的△A1B1C1,(只畫出圖形).

(2)作出△ABC關(guān)于原點O成中心對稱的△A2B2C2,(只畫出圖形),寫出B2和C2的坐標.

【答案】(1)見解析;(2)B2(4,-1),C2(1,-2)

【解析】試題分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、CO為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°后的對應點A1、B1、C1的位置,然后順次連接即可;

2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、BC關(guān)于原點O成中心對稱的點A2、B2、C2的位置,然后順次連接即可,再根據(jù)平面直角坐標系寫出B2C2的坐標.

試題解析:(1△A1B1C1如圖所示;

2△A2B2C2如圖所示,B24,-1),C21,-2).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】同學們,在初一學習正多邊形和圓這節(jié)課時,我們就學習過四邊形的內(nèi)角和等于360°.下面我們就在四邊形中來研究幾個問題:

(1)問題背景:

如圖1:在四邊形ABCD中,ABAD,∠BAD120°,∠B=∠ADC90°,EF分別是BC、CD上的點,且∠EAF60°,探究圖中線段BEEF、FD之間的數(shù)量關(guān)系.

小王同學探究此問題的方法是,延長FD到點G,使DGBE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應是______;

(2)探索延伸:

如圖2,若在四邊形ABCD中,ABAD,∠B+D180°,E、F分別是BC、CD上的點,且∠EAFBAD,上述結(jié)論是否仍成立,并說明理由;

(3)實際應用:

如圖3,在某次軍事演習中,艦艇甲在指揮中心(O)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以45海里/時的速度前進,同時,艦艇乙沿北偏西50°的方向以60海里/時的速度前進,2小時后,指揮中心觀察到甲、乙兩艦艇分別到達E、F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2-4ax+bx軸正半軸于A,B兩點,交y軸正半軸于C,且OB=OC=3

1)求拋物線的解析式;

2)點D為拋物線的頂點,點G在直線BC上,若直接寫出點G的坐標;

3)將拋物線向上平移m個單位,交BC于點M,N(如圖2),若∠MON=45°,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(a2b2(﹣9ab÷-a3b2);

2)(x+2y)(x2y)﹣(x+y)(xy);

3[2a+b2﹣(ab)(3ab)﹣a(﹣a),其中a=﹣1,b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩地相距100千米,甲,乙兩人騎車同時分別從A、B兩地相向而行,假設(shè)他們都保持勻速行駛,直線l1,l2分別表示甲,乙兩人與A地的距離S(單位:km)與行駛時間t(單位:h)之間關(guān)系的圖象.

根據(jù)圖象提供的信息,解答下列問題:

1)甲、乙兩人的速度分別是多少?

2)經(jīng)過多長時間,兩人相遇?

3)分別寫出甲,乙兩人與A地的距離S(單位:km)與行駛時間t(單位:h)之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利44元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出5件.

(1)若商場平均每天要盈利1600元,每件襯衫應降價多少元?

(2)若該商場要每天盈利最大,每件襯衫應降價多少元?盈利最大是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一副直角三角尺如圖①疊放,現(xiàn)將45°的三角尺ADE固定不動,將含30°的三角尺ABC繞頂點A順時針轉(zhuǎn)動,要求兩塊三角尺的一組邊互相平行.如圖②,當∠BAD=15°時,有一組邊BCDE,請再寫出兩個符合要求的∠BAD<∠BAD180°)的度數(shù)_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是⊙的內(nèi)接三角形, 的半徑為, 的距離為

)求的長;

的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,OBC的頂點分別為O(0,0)B(3,-1)C(2,1).

1)以點O(00)為位似中心,按比例尺2: 1在位似中心的異側(cè)將OBC放大為,放大后點BC兩點的對應點分別為、畫出,并寫出點為、的坐標。

2)在(1)中,若點M(xy)為線段BC上任一點,寫出變化后點M的對應點的坐標。(3)求的面積。

查看答案和解析>>

同步練習冊答案