如圖所示,在一筆直的公路MN的同一旁有兩個(gè)新開發(fā)區(qū)A,B,已知AB=10千米
精英家教網(wǎng)
,直線AB與公路MN的夾角∠AON=30°,新開發(fā)區(qū)B到公路MN的距離BC=3千米.
(1)新開發(fā)區(qū)A到公路MN的距離為______;
(2)現(xiàn)要在MN上某點(diǎn)P處向新開發(fā)區(qū)A,B修兩條公路PA,PB,使點(diǎn)P到新開發(fā)區(qū)A,B的距離之和最短.此時(shí)PA+PB=______(千米).

精英家教網(wǎng)
(1)∵BC=3,∠AOC=30°,
∴OB=6.
過點(diǎn)A作AE⊥MN于點(diǎn)E,AO=AB+OB=16,
∴AE=8.
即新開發(fā)區(qū)A到公路的距離為8千米;

(2)過D作DF⊥AE的延長線(點(diǎn)D是點(diǎn)B關(guān)于MN的對(duì)稱點(diǎn)),垂足為F.
精英家教網(wǎng)

則EF=CD=BC=3,AF=AE+EF=AE+BC=11,
過B作BG⊥AE于G,
∴BG=DF,
∵BG=AB?cos30°=5
3

AD=
AF2+DF2 
=
112+(5
)
2
 
=
196 
=14

連接PB,則PB=PD,
∴PA+PB=PA+PD=AD=14(千米).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在一筆直的公路MN的同一旁有兩個(gè)新開發(fā)區(qū)A,B,已知AB=10千米精英家教網(wǎng),直線AB與公路MN的夾角∠AON=30°,新開發(fā)區(qū)B到公路MN的距離BC=3千米.
(1)新開發(fā)區(qū)A到公路MN的距離為
 
;
(2)現(xiàn)要在MN上某點(diǎn)P處向新開發(fā)區(qū)A,B修兩條公路PA,PB,使點(diǎn)P到新開發(fā)區(qū)A,B的距離之和最短.此時(shí)PA+PB=
 
(千米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在一筆直的公路MN的同一旁有兩個(gè)新開發(fā)區(qū)A,B,已知AB=10千米,直線AB與公路MN的夾角∠AON=30°,新開發(fā)區(qū)B到公路MN的距離BC=3千米.
(1)新開發(fā)區(qū)A到公路MN的距離為______;
(2)現(xiàn)要在MN上某點(diǎn)P處向新開發(fā)區(qū)A,B修兩條公路PA,PB,使點(diǎn)P到新開發(fā)區(qū)A,B的距離之和最短.此時(shí)PA+PB=______(千米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河北省中考第一次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,在一筆直的公路MN的同一旁有兩個(gè)新開發(fā)區(qū)A,B,已知AB=10千米,直線AB與公路MN的夾角∠AON=30°,新開發(fā)區(qū)B到公路MN的距離BC=3千米.
(1)新開發(fā)區(qū)A到公路MN的距離為______;
(2)現(xiàn)要在MN上某點(diǎn)P處向新開發(fā)區(qū)A,B修兩條公路PA,PB,使點(diǎn)P到新開發(fā)區(qū)A,B的距離之和最短.此時(shí)PA+PB=______(千米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西貴港市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•貴港)如圖所示,在一筆直的公路MN的同一旁有兩個(gè)新開發(fā)區(qū)A,B,已知AB=10千米,直線AB與公路MN的夾角∠AON=30°,新開發(fā)區(qū)B到公路MN的距離BC=3千米.
(1)新開發(fā)區(qū)A到公路MN的距離為______;
(2)現(xiàn)要在MN上某點(diǎn)P處向新開發(fā)區(qū)A,B修兩條公路PA,PB,使點(diǎn)P到新開發(fā)區(qū)A,B的距離之和最短.此時(shí)PA+PB=______(千米).

查看答案和解析>>

同步練習(xí)冊(cè)答案