【題目】如圖,在△ABC中,AB = AC,點(diǎn)D是邊BC的中點(diǎn),過(guò)點(diǎn)A、D分別作BC與AB的平行線,相交于點(diǎn)E,連結(jié)EC、AD.
求證:四邊形ADCE是矩形.
【答案】證明見(jiàn)解析
【解析】試題分析:先由AB=AC,點(diǎn)D是邊BC的中點(diǎn),根據(jù)等腰三角形三線合一的性質(zhì)得出BD=CD,AD⊥BC,再由AE∥BD,DE∥AB,得出四邊形AEDB為平行四邊形,那么AE=BD=CD,又AE∥DC,根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形得出四邊形ADCE是平行四邊形,又∠ADC=90°,根據(jù)有一個(gè)角是直角的平行四邊形即可證明四邊形ADCE是矩形;
試題解析:∵AB=AC,點(diǎn)D是邊BC的中點(diǎn),
∴BD=CD,AD⊥BC,
∴∠ADC=90°.
∵AE∥BD,DE∥AB,
∴四邊形AEDB為平行四邊形,
∴AE=BD=CD,
又∵AE∥DC,
∴四邊形ADCE是平行四邊形,
∵∠ADC=90°,
∴四邊形ADCE是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式:
①;②;③;④;⑤;⑥(為常數(shù));⑦(為常數(shù)).是二次函數(shù)的有( )
A. 1個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖鋼架中,∠A=,焊上等長(zhǎng)的鋼條P1P2, P2P3, P3P4, P4P5……來(lái)加固鋼架.著P1A= P1P2,且恰好用了4根鋼條,則α的取值范圈是( )
A.15°≤ a <18°
B.15°< a ≤18°
C.18°≤ a <22.5°
D.18° < a ≤ 22.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下文字并解決問(wèn)題:對(duì)于形如這樣的二次三項(xiàng)式,我們可以直接用公式法把它分解成的形式,但對(duì)于二次三項(xiàng)式,就不能直接用公式法分解了.此時(shí),我們可以在中間先加上一項(xiàng),使它與的和構(gòu)成一個(gè)完全平方式,然后再減去,則整個(gè)多項(xiàng)式的值不變.即:,像這樣,把一個(gè)二次三項(xiàng)式變成含有完全平方式的形式的方法,叫做配方法.
利用“配方法”因式分解:
如果,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為米的籬笆圍成,已知墻長(zhǎng)為米.設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為米某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為米的籬笆圍成,已知墻長(zhǎng)為米.設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為米
用含的代數(shù)式表示平行于墻的一邊的長(zhǎng)為_(kāi)_______米,的取值范圍為_(kāi)_______;
這個(gè)苗圃園的面積為平方米時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在□ABCD中,,,,射線AE平分動(dòng)點(diǎn)P以的速度沿AD向終點(diǎn)D運(yùn)動(dòng),過(guò)點(diǎn)P作交AE于點(diǎn)Q,過(guò)點(diǎn)P作,過(guò)點(diǎn)Q作,交PM于點(diǎn)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為,四邊形APMQ與四邊形ABCD重疊部分面積為
______用含t的代數(shù)式表示
當(dāng)點(diǎn)M落在CD上時(shí),求t的值.
求S與t之間的函數(shù)關(guān)系式.
如圖2,連結(jié)AM,交PQ于點(diǎn)G,連結(jié)AC、BD交于點(diǎn)H,直接寫(xiě)出t為何值時(shí),GH與三角形ABD的一邊平行或共線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù)且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂直為D,若OB=2OA=3OD=6.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求兩函數(shù)圖象的另一個(gè)交點(diǎn)坐標(biāo);
(3)直接寫(xiě)出不等式;kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連結(jié)AE、DE、DC
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D,E分別在正△ABC的邊AB,BC上,且BD=CE,CD,AE交于點(diǎn)F.
(1)①求證:△ACE≌△CBD;②求∠AFD的度數(shù);
(2)如圖2,若D,E,M,N分別是△ABC各邊上的三等分點(diǎn),BM,CD交于Q.若△ABC的面積為S,請(qǐng)用S表示四邊形ANQF的面積 ;
(3)如圖3,延長(zhǎng)CD到點(diǎn)P,使∠BPD=30°,設(shè)AF=a,CF=b,請(qǐng)用含a,b的式子表示PC長(zhǎng),并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com