解:(1)利用平行四邊形的性質(zhì):對邊平行且相等,
得出圖1、圖2,3中頂點C的坐標(biāo)分別是:(5,2)、(e+c,d),(c+e-a,d).
故答案為:(5,2)、(e+c,d),(c+e-a,d).
(2)分別過點A,B,C,D作x軸的垂線,垂足分別為A
1,B
1,C
1,D
1,
分別過A,D作AE⊥BB
1于E,DF⊥CC
1于點F.
在平行四邊形ABCD中,CD=BA,
又∵BB
1∥CC
1,
∴∠EBA+∠ABC+∠BCF=∠ABC+∠BCF+∠FCD=180度.
∴∠EBA=∠FCD.
又∵∠BEA=∠CFD=90°,
∴△BEA≌△CFD.
∴AE=DF=a-c,BE=CF=d-b.
設(shè)C(x,y).
由e-x=a-c,得x=e+c-a.
由y-f=d-b,得y=f+d-b.
∴C(e+c-a,f+d-b).
(3)m=c+e-a,n=d+f-b或m+a=c+e,n+b=d+f.
分析:(1)根據(jù)平行四邊形的性質(zhì):對邊平行且相等,得出圖2,3中頂點C的坐標(biāo)分別是(e+c,d),(c+e-a,d);
(2)分別過點A,B,C,D作x軸的垂線,垂足分別為A
1,B
1,C
1,D
1,分別過A,D作AE⊥BB
1于E,DF⊥CC
1于點F.在平行四邊形ABCD中,CD=BA,根據(jù)內(nèi)角和定理,又∵BB
1∥CC
1,可推出∠EBA=∠FCD,△BEA≌△CFD.依題意得出AF=DF=a-c,BE=CF=d-b.設(shè)C(x,y).由e-x=a-c,得x=e+c-a.由y-f=d-b,得y=f+d-b.繼而推出點C的坐標(biāo).
(3)在平行四邊形ABCD中,CD=BA,同理證明△BEA≌△CFD(同(2)證明).然后推出AF=DF=a-c,BE=CF=d-b.又已知C點的坐標(biāo)為(m,n),e-m=a-c,故m=e+c-a.由n-f=d-b,得出n=f+d-b.
點評:此題主要考查了平行四邊形的性質(zhì),平面直角坐標(biāo)系內(nèi)的坐標(biāo),平行線的性質(zhì)等知識.理解平行四邊形的特點結(jié)合平面直角坐標(biāo)系是解決本題的關(guān)鍵.