【題目】下列計算正確的是(
A.x2x3=x6
B.(x23=x5
C.x2+x3=x5
D.x6÷x3=x3

【答案】D
【解析】解:A、x2x3=x5 , 故本選項錯誤; B、(x23=x6 , 故本選項錯誤;
C、x2和x3不是同類項,不能合并,故本選項錯誤;
D、x6÷x3=x3 , 故本選項正確;
故選D.
根據(jù)同底數(shù)冪的乘法、冪的乘方,合并同類項,同底數(shù)冪的除法求出每個式子的值,再進行判斷即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是矩形ABCD內(nèi)的任意一點,連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設它們的面積分別是S1、S2、S3、S4 , 給出如下結論: ①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1 , 則S4=2S2;④若S1=S2 , 則P點在矩形的對角線上.
其中正確的結論的序號是(把所有正確結論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,P是矩形ABCD內(nèi)的任意一點,連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設它們的面積分別是S1、S2、S3、S4 , 給出如下結論:①S1+S4=S2+S3;②S2+S4=S1+S2;③若S3=2S1 , 則S4=2S2;④若S1=S2 , 則S3=S4 , 其中正確結論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由邊長為1cm的若干個正方形疊加行成的圖形,其中第一個圖形由1個正方形組成,周長為4cm , 第二個圖形由4個正方形組成,周長為10cm . 第三個圖形由9個正方形組成,周長為16cm , 依次規(guī)律…

(1)第四個圖形有個正方形組成,周長為cm
(2)第n個圖形有個正方形組成,周長為cm
(3)若某圖形的周長為58cm , 計算該圖形由多少個正方形疊加形成.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA中點,點P在BC上以每秒1個單位的速度由C向B運動,設運動時間為t秒.

(1)△ODP的面積S=
(2)t為何值時,四邊形PODB是平行四邊形?
(3)在線段PB上是否存在一點Q,使得ODQP為菱形?若存在,求t的值,并求出Q點的坐標;若不存在,請說明理由;
(4)若△OPD為等腰三角形,請寫出所有滿足條件的點P的坐標(請直接寫出答案,不必寫過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知AB是⊙O的直徑,BC是⊙O的切線,OC與⊙O相交于點D,連結AD并延長,與BC相交于點E。

(1)若BC=,CD=1,求⊙O的半徑;

(2)取BE的中點F,連結DF,求證:DF是⊙O的切線。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OA的方向是北偏東15°,OB的方向是西偏北50度.

(1)若∠AOC=∠AOB,則OC的方向是;
(2)OD是OB的反向延長線,OD的方向是;
(3)∠BOD可看作是OB繞點O逆時針方向至OD,作∠BOD的平分線OE,OE的方向是;
(4)在(1)、(2)、(3)的條件下,∠COE=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察圖,解答下列問題.

(1)圖中的小圓圈被折線隔開分成六層,第一層有1個小圓圈,第二層有3個圓圈,第三層有5個圓圈,…,第六層有11個圓圈.如果要你繼續(xù)畫下去,那么第八層有幾個小圓圈?第n層呢?
(2)某一層上有65個圓圈,這是第幾層?
(3)數(shù)圖中的圓圈個數(shù)可以有多種不同的方法.
比如:前兩層的圓圈個數(shù)和為(1+3)或22 ,
由此得,1+3=22
同樣,
由前三層的圓圈個數(shù)和得:1+3+5=32
由前四層的圓圈個數(shù)和得:1+3+5+7=42
由前五層的圓圈個數(shù)和得:1+3+5+7+9=52

根據(jù)上述請你猜測,從1開始的n個連續(xù)奇數(shù)之和是多少?用公式把它表示出來.
(4)計算:1+3+5+…+99的和;
(5)計算:101+103+105+…+199的和.

查看答案和解析>>

同步練習冊答案