某校校園超市老板到批發(fā)中心選購甲、乙兩種品牌的文具盒,乙品牌的進貨單價是甲品牌進貨單價的2倍,考慮各種因素,預(yù)計購進乙品牌文具盒的數(shù)量y(個)與甲品牌文具盒的數(shù)量x(個)之間的函數(shù)關(guān)系如圖所示.當(dāng)購進的甲、乙品牌的文具盒中,甲有120個時,購進甲、乙品牌文具盒共需7200元.
(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(2)求甲、乙兩種品牌的文具盒進貨單價;
(3)若該超市每銷售1個甲種品牌的文具盒可獲利4元,每銷售1個乙種品牌的文具盒可獲利9元,根據(jù)學(xué)生需求,超市老板決定,準(zhǔn)備用不超過6300元購進甲、乙兩種品牌的文具盒,且這兩種品牌的文具盒全部售出后獲利不低于1795元,問該超市有幾種進貨方案?哪種方案能使獲利最大?最大獲利為多少元?
,解得:,
∴y與x之間的函數(shù)關(guān)系式為y=-x+300;
(2)∵y=-x+300;
∴當(dāng)x=120時,y=180.
設(shè)甲品牌進貨單價是a元,則乙品牌的進貨單價是2a元,由題意,得
120a+180×2a=7200,解得:a=15,
∴乙品牌的進貨單價是30元.
答:甲、乙兩種品牌的文具盒進貨單價分別為15元,30元;
(3)設(shè)甲品牌進貨m個,則乙品牌的進貨(-m+300)個,由題意,得
,解得:180≤m≤181,∵m為整數(shù),
∴m=180,181.
∴共有兩種進貨方案:
方案1:甲品牌進貨180個,則乙品牌的進貨120個;
方案2:甲品牌進貨181個,則乙品牌的進貨119個;
設(shè)兩種品牌的文具盒全部售出后獲得的利潤為W元,由題意,得
W=4m+9(-m+300)=-5m+2700.∵k=-5<0,∴W隨m的增大而減小,
∴m=180時,W最大=1800元.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠A=40°,有一塊直角三角板DEF的兩條直角邊DE、DF分別經(jīng)過點B、C,若直角頂點D在三角形外部,則∠ABD+∠ACD的度數(shù)是__________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
小慧和小聰沿圖1中的景區(qū)公路游覽.小慧乘坐車速為30km/h的電動汽車,早上7:00從賓館出發(fā),游玩后中午12:00回到賓館.小聰騎車從飛瀑出發(fā)前往賓館,速度為20km/h,途中遇見小慧時,小慧恰好游完一景點后乘車前往下一景點.上午10:00小聰?shù)竭_賓館.圖2中的圖象分別表示兩人離賓館的路程s(km)與時間t(h)的函數(shù)關(guān)系.試結(jié)合圖中信息回答:
(1)小聰上午幾點鐘從飛瀑出發(fā)?
(2)試求線段AB、GH的交點B的坐標(biāo),并說明它的實際意義.
(3)如果小聰?shù)竭_賓館后,立即以30km/h的速度按原路返回,那么返回途中他幾點鐘遇見小慧?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
江蘇省的面積約為102600km2,數(shù)據(jù)102600用科學(xué)記數(shù)法表示正確的是( )
A.12.26×104 B.1.026×105 C.1.026×104 D.1.026×106
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com