【題目】如圖,在等腰梯形ABCD中,AD//BC,AD=2,AB=5,BC=10,點(diǎn)E是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B,C重合),作∠AEF=∠AEB,使邊EF交邊CD于點(diǎn)F,(不與C,D重合),線段BE=______________時(shí),△ABE與△CEF相似。
【答案】或8
【解析】
分類討論,當(dāng)∠AEB=∠FEC時(shí),根據(jù)正切函數(shù),可得ME的長,根據(jù)線段的和差,可得答案,當(dāng)∠AEB=∠EFC時(shí),根據(jù)等腰三角形的性質(zhì),可得BM與ME的關(guān)系,根據(jù)線段的和差,可得答案;
解:如圖:過A作AM⊥BC,過D作DN⊥BC,
∵等腰梯形ABCD,AM⊥BC,DN⊥BC,AD=2,BC=10,
∴BM=CN=4,BN=6,
又AB=5,
∴,
∴DN=AM=3
△ABE與△CEF相似有兩種情況,
(1)當(dāng)∠AEB=∠FEC時(shí)
∵∠AEF=∠AEB
∴∠AEF=∠AEB=∠FEC=60°
由(1)知:AM=3,BM=4
∴,
∴,
(2)當(dāng)∠AEB=∠EFC時(shí),
∵∠AEF=∠AEB,
∴∠AEF=∠EFC,
∴AE∥DC,
∴∠AEB=∠C=∠B,
∴△ABE是等腰三角形,
如圖,過A 作AM⊥BC,
∴BM=ME(等腰三角形三線合一性質(zhì)).
∵BM=4,
∴BE=2BM=8,
綜上,當(dāng)△ABE∽△CEF時(shí),BE的長為或8;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(2,0).OC=3OB.
(1)求拋物線的解析式;
(2)若點(diǎn)P是線段AC下方拋物線上的動(dòng)點(diǎn),求三角形PAC面積的最大值.
(3)在(2)的條件下,△PAC的面積為S,其中S為整數(shù)的點(diǎn)P作“好點(diǎn)”,則存在多個(gè)“好點(diǎn)”,則所有“好點(diǎn)”的個(gè)數(shù)為
(4)在(2)的條件下,以PA為邊向直線AC右上側(cè)作正方形APHG,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變,當(dāng)頂點(diǎn)H或G恰好落在y軸上時(shí),直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為2,以BC邊上的高AB1為邊作等邊三角形AB1C1,△ABC與△AB1C1公共部分的面積記為S1,再以等邊三角形AB1C1邊B1C1上的高AB2為邊作等邊三角形AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2……以此類推,那么S3_____.(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下四個(gè)結(jié)論:①該拋物線的對(duì)稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c=0無實(shí)數(shù)根;③a-b+c≥0;④的最小值為3,其中正確結(jié)論的個(gè)數(shù)是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=2.下列結(jié)論:
①abc<0;②9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1>y2;④﹣<a<﹣;⑤c-3a>0.
其中正確結(jié)論有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)求出拋物線的頂點(diǎn)坐標(biāo)、對(duì)稱軸、最小值;
(2)求出拋物線與x軸、y軸交點(diǎn)坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠C=60°,點(diǎn)D是射線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為一邊的等邊三角形.
(1)如圖①,當(dāng)點(diǎn)D在線段BC上時(shí),求證:△AEB≌△ADC;
(2)如圖①,探究BE和AC的位置關(guān)系,并說明理由.
(3)如圖②,當(dāng)點(diǎn)D在BC的延長線上時(shí),(2)中結(jié)論還成立嗎?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com