【題目】定義:有兩條邊長的比值為 的直角三角形叫“潛力三角形”.如圖,在△ABC中,∠B=90°,D是AB的中點(diǎn),E是CD的中點(diǎn),DF∥AE交BC于點(diǎn)F.

(1)設(shè)“潛力三角形”較短直角邊長為a,斜邊長為c,請你直接寫出 的值為;
(2)若∠AED=∠DCB,求證:△BDF是“潛力三角形”;
(3)若△BDF是“潛力三角形”,且BF=1,求線段AC的長.

【答案】
(1)2或
(2)

解:證明:延長AE交BC于G,如圖所示:

∵DF∥AE,D是AB的中點(diǎn),

∴∠AED=∠CDF,BF=GF,

∵∠AED=∠DCB,

∴∠CDF=∠DCB,

∴DF=CF,

∵DF∥AE,E是CD的中點(diǎn),

∴CG=GF,

∴BF=GF=CG,

∴DF=CF=2GF=2BF,

= ,

又∵∠B=90°,

∴△BDF是“潛力三角形”;


(3)

解:分四種情況:

①當(dāng) = 時(shí),

∵BF=1,

∴GF=CG=BF=1,BD=2,

∴AB=2BD=4,BC=3,

∴AC= = =5;

②當(dāng) = 時(shí),DF=2BF=2,

∴BD= = =

∴AB=2BD=2 ,

∵BC=3,∠B=90°,

∴AC= = =

③當(dāng) = 時(shí),BD= BF=

∴AB=2BD=1,

∵BC=3,∠B=90°,

∴AC= = = ;

④當(dāng) = 時(shí),

設(shè)BD=x,則DF=2x,

由勾股定理得:(2x)2﹣x2=12

解得:x= ,

∴AB=2BD= ,

∵BC=3,∠B=90°,

∴AC= = = ;

綜上所述:若△BDF是“潛力三角形”,且BF=1,線段AC的長為5或


【解析】(1)解:分兩種情況:
①當(dāng) = 時(shí), =2;
②設(shè)另一條直角邊長為b,當(dāng) = 時(shí),b=2a,
∵∠B=90°,
∴c= = a,
=
所以答案是:2或 ;
【考點(diǎn)精析】通過靈活運(yùn)用三角形的“三線”,掌握1、三角形角平分線的三條角平分線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點(diǎn)到對邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠MON=45°,OA1=1,作正方形A1B1C1A2 , 面積記作S1;再作第二個(gè)正方形A2B2C2A3 , 面積記作S2;繼續(xù)作第三個(gè)正方形A3B3C3A4 , 面積記作S3;點(diǎn)A1、A2、A3、A4…在射線ON上,點(diǎn)B1、B2、B3、B4…在射線OM上,…依此類推,則第6個(gè)正方形的面積S6是(
A.256
B.900
C.1024
D.4096

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動點(diǎn)M沿路線O→A→C運(yùn)動.

(1)求直線AB的解析式.

(2)求OAC的面積.

(3)當(dāng)OMC的面積是OAC的面積的時(shí),求出這時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某面粉加工廠加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經(jīng)過稱重,質(zhì)量超過標(biāo)準(zhǔn)質(zhì)量10kg的用正數(shù)表示,質(zhì)量低于標(biāo)準(zhǔn)質(zhì)量10kg的用負(fù)數(shù)表示,結(jié)果記錄如下

與標(biāo)準(zhǔn)質(zhì)量的偏差(kg)

1.5

1

0.5

0

0.5

1

2

袋數(shù)()

40

30

10

25

40

20

35

(1)求這批面粉的總質(zhì)量;

(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形ABC中,BD⊥AC于D,CE⊥AB于E,且SADE= S四邊形BEDC , 則∠A=(
A.75°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠ABC=90°,點(diǎn)P為射線BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),分別以AB、AP為邊在∠ABC的內(nèi)部作等邊△ABE和△APQ,連接QE并延長交BP于點(diǎn)F.

(1)如圖1,若AB=,點(diǎn)A,E,P恰好在一條直線上時(shí),求EF的長(直接寫出結(jié)果);

(2)如圖2,當(dāng)點(diǎn)P為射線BC上任意一點(diǎn)時(shí),求證:BF=EF;

(3)若AB=,設(shè)BP=2,求QF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,過點(diǎn)CCDCB交∠CBA的外角平分線于點(diǎn)D,連接AD,過點(diǎn)C作∠BCE=BAD,交AB的延長線于點(diǎn)E.若CD=3,則CE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將含30°角的三角板ABC如圖放置,使其三個(gè)頂點(diǎn)分別落在三條平行直線上,其中∠ACB=90°,當(dāng)∠1=60°時(shí),圖中等于30°的角的個(gè)數(shù)是(

A. 6個(gè) B. 5個(gè) C. 4個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系xoy中,直線l與x、y軸分別交于點(diǎn)A(4,0)、B(0, )兩點(diǎn),∠BAO的角平分線交y軸于點(diǎn)D.點(diǎn)C為直線l上一點(diǎn),以AC為直徑的⊙G經(jīng)過點(diǎn)D,且與x軸交于另一點(diǎn)E.
(1)求證:y軸是⊙G的切線;
(2)請求⊙G的半徑r,并直接寫出點(diǎn)C的坐標(biāo);
(3)如圖2,若點(diǎn)F為⊙G上的一點(diǎn),連接AF,且滿足∠FEA=45°,請求出EF的長?

查看答案和解析>>

同步練習(xí)冊答案