【題目】如圖,⊙O的直徑AB與弦CD相交于點(diǎn)E,若AE=5,BE=1,CD=4,則∠AED=____

【答案】30°

【解析】試題分析:連接OD,過(guò)圓心OOH⊥CD于點(diǎn)H.根據(jù)垂徑定理求得DH=CH=;然后根據(jù)已知條件“AE=5,BE=1”求得⊙O的直徑AB=6,從而知⊙O的半徑OD=3,OE=2;最后利用勾股定理求得OH=1,再由30°角所對(duì)的直角邊是斜邊的一半來(lái)求∠AED.解:連接OD,過(guò)圓心OOH⊥CD于點(diǎn)H∴DH=CH=∵AE=5BE=1,∴AB=6,∴OA=OD=3⊙O的半徑);∴OE=2;Rt△ODH中,OH=1(勾股定理);在Rt△OEH中,OH=∴∠OEH=30°,即∠AED=30°.故答案是:30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=12,點(diǎn)C,DAB上,且AC=DB=2,點(diǎn)P從點(diǎn)C沿線段CD向點(diǎn)D運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)D停止),以AP、BP為斜邊在AB的同側(cè)畫(huà)等腰RtAPE和等腰RtPBF,連接EF,取EF的中點(diǎn)G,①△EFP的外接圓的圓心為點(diǎn)G;②四邊形AEFB的面積不變;③EF的中點(diǎn)G移動(dòng)的路徑長(zhǎng)為4;④△EFP的面積的最小值為8.以上說(shuō)法中正確的有_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】你吃過(guò)拉面嗎?實(shí)際上在做拉面的過(guò)程中就滲透著數(shù)學(xué)知識(shí):一定體積的面團(tuán)做成拉面,面條的總長(zhǎng)度y(m)四面條的粗細(xì)(橫截面積)S(mm2的反比例函數(shù),其圖象如圖所示.

(1)寫(xiě)出yS的函數(shù)關(guān)系式;

(2)求當(dāng)面條粗1.6 mm2時(shí),面條的總長(zhǎng)度是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在長(zhǎng)方形中,.延長(zhǎng)到點(diǎn),使,連接,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿向終點(diǎn)運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,當(dāng)的值為___________時(shí),全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,,EBD中點(diǎn),延長(zhǎng)CD到點(diǎn)F,使

求證:

求證:四邊形ABDF為平行四邊形

,,求四邊形ABDF的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一拱橋所在弧所對(duì)的圓心角為120°(∠AOB=120°),半徑為5 m,一艘6 m寬的船裝載一集裝箱,已知箱頂寬3.2 m,離水面AB2 m,問(wèn)此船能過(guò)橋洞嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由一些大小相同的小正方體組成的簡(jiǎn)單幾何體的主視圖和俯視圖如圖29-29所示.

(1)請(qǐng)你畫(huà)出這個(gè)幾何體的一種左視圖.

(2)若組成這個(gè)幾何體的小正方體的塊數(shù)為n,請(qǐng)你寫(xiě)出n的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料后解決問(wèn)題:

小明遇到下面一個(gè)問(wèn)題:

計(jì)算(2+1)(22+1)(24+1)(28+1).

經(jīng)過(guò)觀察,小明發(fā)現(xiàn)如果將原式進(jìn)行適當(dāng)?shù)淖冃魏罂梢猿霈F(xiàn)特殊的結(jié)構(gòu),進(jìn)而可以應(yīng)用平方差公式解決問(wèn)題,具體解法如下:(2+1)(22+1)(24+1)(28+1)

=(2+1)(2﹣1)(22+1)(24+1)(28+1)

=(22﹣1)(22+1)(24+1)(28+1)

=(24﹣1)(24+1)(28+1)

=(28﹣1)(28+1)

=216﹣1

請(qǐng)你根據(jù)小明解決問(wèn)題的方法,試著解決以下的問(wèn)題:

(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____

(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____

(3)化簡(jiǎn):(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,AEBC于點(diǎn)E,∠BAE=30°AD=4cm

1)求菱形ABCD的各角的度數(shù);

2)求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案