如圖,已知D是AC上一點,AB=DA,DE∥AB,∠B=∠DAE。求證:BC=AE。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

)如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,試判斷DG與BC的位置關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

填寫適當(dāng)?shù)睦碛桑喝鐖D,已知:AB∥ED,你能求出∠B+∠BCD+∠D的大小嗎?
解:過點C畫FC∥AB
∵AB∥ED( 。
FC∥AB(  )
∴FC∥ED( 。
∴∠B+∠1=180°
∠D+∠2=180°( 。
∴∠B+∠1+∠D+∠2=  °(    )
即:∠B+∠BCD+∠D=360°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,求證:AD平分∠BAC。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平行四邊形ABCD中,AD>AB.

(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴ ∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.本試卷錫     
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當(dāng)∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,△ABC經(jīng)過位似變換得到△DEF,點O是位似中心且OA=AD,則△ABC與△DEF的面積比是( 。

A.1:6 B.1:5 C.1:4 D.1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:計算題

如圖,在菱形ABCD中,E是AB的中點,且DE⊥AB.

【小題1】求∠ABD的度數(shù)
【小題2】若菱形的邊長為2,求菱形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

小張用手機拍攝得到甲圖,經(jīng)放大后得到乙圖,甲圖中的線段AB在乙圖中的對應(yīng)線段是(  )

A.FGB.FHC.EHD.EF

查看答案和解析>>

同步練習(xí)冊答案