【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E、F分別在邊AB,BC上,且AE=BF=1,則OC=
【答案】
【解析】解:∵正方形ABCD中,AB=BC=CD=4,∠B=∠DCF,
又∵AE=BF,
∴BE=CF=4﹣1=3,DF= = =5,
則在直角△BEC和直角△CFD中,
,
∴△BEC≌△CFD,
∴∠BEC=∠CFD,
又∵直角△BCE中,∠BEC+∠BCE=90°,
∴∠CFD+∠BCE=90°,
∴∠FOC=90°,即OC⊥DF,
∴S△CDF= CDCF= OCDF,
∴OC= = = .
故答案是: .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正方形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角;正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線(xiàn)與邊的夾角是45o;正方形的兩條對(duì)角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形;相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形 ABCD 中,AC 是對(duì)角線(xiàn),AB=CD,∠DAC+∠BCA=180°,∠BAC+∠ACD=90°,四邊形 ABCD 的面積是 18,則 CD 的長(zhǎng)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=mx2+(2m+1)x+2(m為實(shí)數(shù)).
(1)請(qǐng)?zhí)骄吭摵瘮?shù)圖象與x軸的公共點(diǎn)個(gè)數(shù)的情況(要求說(shuō)明理由);
(2)在圖中給出的平面直角坐標(biāo)系中分別畫(huà)出m=﹣1和m=1的函數(shù)圖象,并根據(jù)圖象直接寫(xiě)出它們的交點(diǎn)坐標(biāo);
(3)探究:對(duì)任意實(shí)數(shù)m,函數(shù)的圖象是否一定過(guò)(2)中的點(diǎn),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到社會(huì)的廣泛關(guān)注,某校政教處對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有______名;
(2)請(qǐng)補(bǔ)全折線(xiàn)統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校組織八年級(jí)1000名學(xué)生參加漢字聽(tīng)寫(xiě)大賽,為了解學(xué)生整體聽(tīng)寫(xiě)能力,從中抽取部分學(xué)生的成績(jī)(得分取正整數(shù),滿(mǎn)分為100分)進(jìn)行統(tǒng)計(jì)分析,請(qǐng)根據(jù)尚未完成的下列圖表,解答問(wèn)題:
組別 | 分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
一 | 50.5~60.5 | 16 | 0.08 |
二 | 60.5~70.5 | 30 | 0.15 |
三 | 70.5~80.5 | 50 | 0.25 |
四 | 80.5~90.5 | m | 0.40 |
五 | 90.5~100.5 | n |
(1)本次抽樣調(diào)查的樣本是__________,樣本容量為__________,表中m=__________,n=__________;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若抽取的樣本具有較好的代表性,且成績(jī)超過(guò)80分為優(yōu)秀,根據(jù)樣本估計(jì)該校八年級(jí)學(xué)生中漢字聽(tīng)寫(xiě)能力優(yōu)秀的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在解決問(wèn)題:已知a=,求2a2﹣8a+1的值,他是這樣分析與解的:
∵a===2﹣
∴a﹣2=﹣
∴(a﹣2)2=3,a2﹣4a+4=3
∴a2﹣4a=﹣1
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1
請(qǐng)你根據(jù)小明的分析過(guò)程,解決如下問(wèn)題:
(1)化簡(jiǎn)+++…+
(2)若a=,求4a2﹣8a+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個(gè)根,且OA>OB.
(1)求OA、OB的長(zhǎng).
(2)若點(diǎn)E為x軸正半軸上的點(diǎn),且S△AOE= ,求經(jīng)過(guò)D、E兩點(diǎn)的直線(xiàn)解析式及經(jīng)過(guò)點(diǎn)D的反比例函數(shù)的解析式,并判斷△AOE與△AOD是否相似.
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線(xiàn)AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫(xiě)出F點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將n個(gè)邊長(zhǎng)都為2的正方形按如圖所示擺放,點(diǎn)A1 , A2 , …An分別是正方形的中心,則這n個(gè)正方形重疊部分的面積之和是( )
A.n
B.n﹣1
C.4(n﹣1)
D.4n
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】出租車(chē)司機(jī)小張某天上午營(yíng)運(yùn)全是在東西走向的政府大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午的行程是(單位:千米):+15,-3,+16,-11,+10,-12,+4,-15,+16,-18.
(1)將最后一名乘客送達(dá)目的地時(shí),小張距上午出發(fā)點(diǎn)的距離是多少千米?在出發(fā)點(diǎn)的什么方向?
(2)若汽車(chē)耗油量為0.6升/千米,出車(chē)時(shí),郵箱有油72.2升,若小張將最后一名乘客送達(dá)目的地,再返回出發(fā)地,問(wèn)小張今天上午是否需要加油?若要加油至少需要加多少才能返回出發(fā)地?若不用加油,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com