【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,CD平分∠ACB.
(1)尺規(guī)作圖:作線段AB的垂直平分線l;
(要求:保留作圖痕跡,不寫作法)
(2)記直線l與AB,CD的交點(diǎn)分別是點(diǎn)E,F.當(dāng)AC=4時(shí),求EF的長(zhǎng).
【答案】(1)見解析;(2)4.
【解析】
(1)利用尺規(guī)作出線段AB的垂直平分線即可.
(2)連接EC,想辦法證明EF=EC即可解決問題.
(1)如圖所示,直線l是所求作的線段AB的垂直平分線.
(2)解:連接EC.
∵∠ACB=90°,∠B=30°,AC=4,
∴AC=AB,∠A=60°,
∴AB=8,
∵EF是AB的垂直平分線,
∴AE=AB=4,∠AEF=90°,
∴AE=AC,
∴△AEC是等邊三角形,
∴∠AEC=∠ACE=60°,EC=AC=4,
∴∠FEC=∠AEF+∠AEC=150°,
∵CD平分∠ACB,
∴∠ACF=∠ACB=45°,
∴∠ECF=∠ECA-∠FCA=15°,
∴∠EFC=180°-∠FEC-∠ECF=15°=∠ECF,
∴EF=EC=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個(gè)根;
(2)當(dāng)x為何值時(shí),y>0?當(dāng)x為何值時(shí),y<0?
(3)寫出y隨x的增大而減小的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)O與平面直角坐標(biāo)系的原點(diǎn)重合,點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B的坐標(biāo)為(-5,4),點(diǎn)D為邊BC上一點(diǎn),連接OD,若線段OD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)O恰好落在AB邊上的點(diǎn)E處,則點(diǎn)E的坐標(biāo)為( )
A. (-5,3) B. (-5,4) C. (-5,) D. (-5,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使三角形AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為( 。
A. 80° B. 90° C. 100° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)(﹣2,y1)、(﹣1,y2)和(1,y3)分別在反比例函數(shù)y=﹣的圖象上,則下列判斷中正確的是( 。
A. y1<y2<y3 B. y3<y1<y2 C. y2<y3<y1 D. y3<y2<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,A(0,4),B(﹣3,0),C(2,0),D為B點(diǎn)關(guān)于AC的對(duì)稱點(diǎn),反比例函數(shù)y= 的圖象經(jīng)過D點(diǎn).
(1)證明四邊形ABCD為菱形;
(2)求此反比例函數(shù)的解析式;
(3)已知在y=的圖象(x>0)上一點(diǎn)N,y軸正半軸上一點(diǎn)M,且四邊形ABMN是平行四邊形,求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長(zhǎng)最快的新品種.圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請(qǐng)根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時(shí)間有多少小時(shí)?
(2)求k的值;
(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】□ABCD中,E、F是對(duì)角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com